# DEPARTMENT OF HIGHER EDUCATION U.P. GOVERNMENT, LUCKNOW

# **National Education Policy-2020**

Common Minimum Syllabus for all U.P. State Universities and Colleges FOR FIRST THREE YEARS OF HIGHER EDUCATION (UG)



FOR

**B.Sc.** 

# MATHEMATICS

**National Education Policy-2020** 

#### Common Minimum Syllabus for all U.P. State Universities/ Colleges SUBJECT: MATHEMATICS

| Name                                                               | Designation                                 | Affiliation                                              |
|--------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|
| Steering Committee                                                 | · · · · · · · · · · · · · · · · · · ·       | · · · ·                                                  |
| Mrs. Monika S. Garg, (I.A.S.)<br>Chairperson Steering<br>Committee | Additional Chief Secretary                  | Dept. of Higher Education U.P., Lucknow                  |
| Prof. Poonam Tandan                                                | Professor,<br>Dept. of Physics              | Lucknow University, U.P.                                 |
| Prof. Hare Krishna                                                 | Professor,<br>Dept. of Statistics           | CCS University Meerut, U.P.                              |
| Dr. Dinesh C. Sharma                                               | Associate Professor,<br>Dept. of Zoology    | K.M. Govt. Girls P.G. College Badalpur, G.B. Nagar, U.P. |
| Supervisory Committee-Science Fact                                 | ulty                                        |                                                          |
| Dr. Vijay Kumar Singh                                              | Associate Professor,<br>Dept. of Zoology    | Agra College, Agra                                       |
| Dr. Santosh Singh                                                  | Dean,<br>Dept. of Agriculture               | Mahatma Gandhi Kashi Vidhyapeeth, Varanasi               |
| Dr. Baby Tabussam                                                  | Associate Professor,<br>Dept. of Zoology    | Govt. Raza P.G. College Rampur, U.P.                     |
| Dr. Sanjay Jain                                                    | Associate Professor,<br>Dept. of Statistics | St. John's College, Agra                                 |

#### Syllabus Developed by:

| S.No. | Name               | Designation         | Department     | College/University                 |
|-------|--------------------|---------------------|----------------|------------------------------------|
| 1.    | Dr. S. S. Mishra   | Professor           | Mathematics    | Dr.R M L Avadh University, Ayodhya |
|       |                    |                     | and Statistics |                                    |
| 2.    | Dr. Jogendra Kumar | Assistant Professor | Mathematics    | Govt. Degree College, Raza Nagar   |
|       |                    |                     |                | Swar, Rampur (UP)                  |
| 3.    | Dr. Abhishek Singh | Assistant Professor | Mathematics    | Dr.R M L Avadh University, Ayodhya |
|       |                    |                     | and Statistics |                                    |

| S      | EMESTER  | WISE TI        | TLES OF THE PAPER IN UG MAT                                                                                                                                                                                | <b>HEMATICS COUR</b> | SE     |
|--------|----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|
| YEAR   | SEMESTER | COURSE<br>CODE | PAPER TITLE                                                                                                                                                                                                | THEORY/PRACTICAL     | CREDIT |
|        | CE       | <b>RTIFICA</b> | <b>FE COURSE IN APPLIED MATHE</b>                                                                                                                                                                          | MATICS               |        |
| FIRST  | Ι        | B030101T       | Differential Calculus & Integral Calculus                                                                                                                                                                  | THEORY               | 4      |
| YEAR   |          | B030102P       | PRACTICAL                                                                                                                                                                                                  | PRACTICAL            | 2      |
|        | II       | B030201T       | Matrices and Differential Equations & Geometry                                                                                                                                                             | THEORY               | 6      |
|        |          |                | <b>DIPLOMA IN MATHEMATICS</b>                                                                                                                                                                              |                      |        |
| SECOND | III      | B030301T       | Algebra & Mathematical Methods                                                                                                                                                                             | THEORY               | 6      |
| YEAR   | IV       | B030401T       | Differential Equation & Mechanic                                                                                                                                                                           | THEORY               | 6      |
|        |          | 1              | <b>DEGREE IN MATHEMATICS</b>                                                                                                                                                                               |                      | 1      |
| THIRD  | V        | B030501T       | Group and Ring Theory & Linear Algebra                                                                                                                                                                     | THEORY               | 5      |
| YEAR   |          | B030502T       | <ul> <li>Any One of The Following</li> <li>(i) Number Theory &amp; Game Theory</li> <li>(ii) Graph Theory &amp; Discrete Mathematics</li> <li>(iii) Differential Geometry &amp; Tensor Analysis</li> </ul> | THEORY               | 5      |
|        | VI       | B030601T       | Metric Space & Complex Analysis                                                                                                                                                                            | THEORY               | 4      |
|        |          | B030602T       | Numerical Analysis & Operations Research                                                                                                                                                                   | THEORY               | 4      |
|        |          | B030603P       | PRACTICAL                                                                                                                                                                                                  | PRACTICAL            | 2      |

|                                              |            |                        |                       |        |                                      |                                    | B.A./B.Sc. I                                                                                       |                                       |                                 |                                                                            |
|----------------------------------------------|------------|------------------------|-----------------------|--------|--------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|----------------------------------------------------------------------------|
| PROGRAMME                                    | YEAR       | SEMESTER<br>(15 Weeks) | PAPER                 | CREDIT | PERIODS<br>Per<br>Week               | PERIODS<br>(HOURS)<br>Per Semester | PAPER TITLE                                                                                        | UNIT<br>(Periods Per<br>Semester)     | PREREQUISITE                    | ELECTIVE<br>(For Other Faculty)                                            |
|                                              |            |                        | Paper-1               | 4      | 4                                    | 4x 15= 60                          | Differential Calculus<br>&                                                                         | <b>Part A</b><br>Unit I (9)           | Mathematics in 12 <sup>th</sup> | Engg. and Tech. (UG),<br>Chemistry/Biochemistry/                           |
|                                              |            | SEMESTER – I           |                       |        |                                      |                                    | Integral Calculus                                                                                  | Unit II (7)<br>Unit III (7)           |                                 | Life Sciences(UG), Economics(UG/PG),<br>Commerce(UG), BBA/BCA, B.Sc.(C.S.) |
|                                              |            |                        |                       |        |                                      |                                    | Part A: Differential Calculus                                                                      | Unit IV (7)<br><b>Part B</b>          |                                 |                                                                            |
| ICS                                          |            |                        |                       |        |                                      | Part B: Integral Calculus          | Unit V (9)<br>Unit VI (7)                                                                          |                                       |                                 |                                                                            |
| RSE ]<br>1ATI                                |            | SEMI                   |                       |        |                                      |                                    |                                                                                                    | Unit VII (7)<br>Unit VIII (7)         |                                 |                                                                            |
| CERTIFICATE COURSE IN<br>APPLIED MATHEMATICS | FIRST YEAR |                        | Paper-II<br>Practical | 2      | 2 Lab<br>Periods(2<br>Hours<br>Each) | 2x2x 15= 60                        | Practical<br>(Practicals to be done<br>using Mathematica<br>/MATLAB /Maple<br>/Scilab/Maxima etc.) |                                       | Mathematics in 12 <sup>th</sup> | Engg. and Tech. (UG), B.Sc.(C.S.)                                          |
| RTIFIC<br>PLIEI                              | FI         | п                      | Paper-1               | 6      | 6                                    | 6 x 15= 90                         | Matrices and Differential<br>Equations                                                             | Part A<br>Unit I (12)<br>Unit II (11) | Mathematics in 12 <sup>th</sup> | Engg. and Tech. (UG), B.Sc.(C.S.)                                          |
| CEI<br>AI                                    |            | TER -                  |                       |        |                                      |                                    | &<br>Geometry                                                                                      | Unit III (11)<br>Unit IV (11)         |                                 |                                                                            |
|                                              |            | SEMESTE                |                       |        |                                      |                                    | Part A: Matrices and<br>Differential Equations                                                     | Part B<br>Unit V (12)<br>Unit VI (11) |                                 |                                                                            |
|                                              |            |                        |                       |        |                                      |                                    | Part B: Geometry                                                                                   | Unit VII (11)<br>Unit VIII (11)       |                                 |                                                                            |

#### PROPOSED STRUCTURE OF UG MATHEMATICS SYLLABUS AS PER NEP 2020 GUIDELINES

#### **GENERAL OVERVIEW**

|               |             |             |                        |         |        |                        | -                                  | B.A./B.Sc. II                                                                           |                                                                                                                              |                                                 |                                                                                                                    |
|---------------|-------------|-------------|------------------------|---------|--------|------------------------|------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| PROGRA        | MME         | YEAR        | SEMESTER<br>(15 Weeks) | PAPER   | CREDIT | PERIODS<br>Per<br>Week | PERIODS<br>(HOURS)<br>Per Semester | PAPER TITLE                                                                             | UNIT<br>(Periods Per<br>Semester)                                                                                            | PREREQUISITE                                    | ELECTIVE<br>(For Other Faculty)                                                                                    |
|               | S           |             | SEMESTER -III          | Paper-1 | 6      | 6                      |                                    | Algebra<br>&<br>Mathematical Methods<br>Part A: Algebra<br>Part B: Mathematical Methods | Part A         Unit I (12)         Unit II (11)         Unit IV (11)         Part B         Unit V (12)         Unit VI (11) | Certificate Course<br>in Applied<br>Mathematics | Engg. and Tech. (UG), B.Sc.(C.S.)                                                                                  |
| DIPLOMA<br>IN | MATHEMATICS | SECOND YEAR | IV SEMI                | Paper-1 | 6      | 6                      | 6 x 15= 90                         | Differential Equation<br>&<br>Mechanics<br>Part A: Differential Equation                | Unit VII (11)<br>Unit VIII (11)<br><b>Part A</b><br>Unit I (12)<br>Unit II (11)<br>Unit III (11)<br>Unit IV (11)             | Certificate Course<br>in Applied<br>Mathematics | Engg. and Tech. (UG),<br>Economics(UG/PG), B.Sc.(C.S.)<br>Engineering and Technology (UG),<br>Science (Physics-UG) |
|               |             |             | SEMESTER –             |         |        |                        |                                    | Part B: Mechanics                                                                       | <b>Part B</b> Unit V (12)         Unit VI (11)         Unit VII (11)         Unit VIII (11)                                  |                                                 |                                                                                                                    |

|                             |          |                        |         |        |                        |                                    | B.A./B.Sc. III                                                                                               |                                                                                                                                                                                            |                           |                                       |           |                                                                                                         |                                                                                                                              |                                                 |                                                        |
|-----------------------------|----------|------------------------|---------|--------|------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|-----------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|
| PROGRAMME                   | YEAR     | SEMESTER<br>(15 Weeks) | PAPER   | CREDIT | PERIODS<br>Per<br>Week | PERIODS<br>(HOURS)<br>Per Semester | PAPER TITLE                                                                                                  | UNIT<br>(Periods Per<br>Semester)                                                                                                                                                          | PREREQUISITE              | ELECTIVE<br>(For Other Faculty)       |           |                                                                                                         |                                                                                                                              |                                                 |                                                        |
|                             |          |                        |         |        |                        |                                    |                                                                                                              | Paper-1                                                                                                                                                                                    | 5                         | 5                                     | 5x 15= 75 | Group and Ring Theory<br>&<br>Linear Algebra<br>Part A: Group and Ring Theory<br>Part B: Linear Algebra | Part A<br>Unit I (10)<br>Unit II (10)<br>Unit III (9)<br>Unit IV (9)<br>Part B<br>Unit V (10)<br>Unit VI (9)<br>Unit VII (9) | Certificate Course in<br>Applied<br>Mathematics | Engg. and Tech. (UG),<br>Economics(UG/PG), B.Sc.(C.S.) |
|                             |          |                        | Paper-2 | 5      | 5                      | 5x 15= 75                          | (i) Number Theory & Game<br>Theory<br>Part A: Number Theory<br>Part B: Game Theory                           | Unit VIII (9)<br>Part A<br>Unit I (10)<br>Unit II (9)<br>Unit III (9)<br>Unit IV (9)<br>Part B                                                                                             | Diploma in<br>Mathematics | Engg. and Tech.(UG), BCA, B.Sc.(C.S.) |           |                                                                                                         |                                                                                                                              |                                                 |                                                        |
| DEGREE<br>IN<br>MATHEMATICS | RD YERAR | SEMESTER – V           |         |        |                        |                                    | (ii) Graph Theory & Discrete<br>Mathematics                                                                  | Unit V (10)<br>Unit VI (10)<br>Unit VII (9)<br>Unit VIII (9)<br><b>Part A</b><br>Unit I (10)<br>Unit II (9)                                                                                | Diploma in<br>Mathematics | Engg. and Tech. (UG), B.Sc.(C.S.)     |           |                                                                                                         |                                                                                                                              |                                                 |                                                        |
| DE<br>MATI                  | THI      | ø                      |         |        |                        |                                    | Part A: Graph Theory<br>Part B: Discrete Mathematics                                                         | Unit II (9)<br>Unit II (9)<br>Unit IV (9)<br><b>Part B</b><br>Unit V (10)<br>Unit VI (10)<br>Unit VII (9)<br>Unit VIII (9)                                                                 |                           |                                       |           |                                                                                                         |                                                                                                                              |                                                 |                                                        |
|                             |          |                        |         |        |                        |                                    | (iii) Differential Geometry &<br>Tensor Analysis<br>Part A: Differential Geometry<br>Part B: Tensor Analysis | Part A         Unit I (10)         Unit II (9)         Unit III (9)         Unit IV (9)         Part B         Unit V (10)         Unit VI (10)         Unit VII (9)         Unit VIII (9) | Diploma in<br>Mathematics | Engg. and Tech. (UG), B.Sc.(C.S.)     |           |                                                                                                         |                                                                                                                              |                                                 |                                                        |

|                          |            |           |         |             |                | Metric Space                | Part A          | Diploma in         | Engg. and Tech. (UG), B.Sc.(C.S.)       |
|--------------------------|------------|-----------|---------|-------------|----------------|-----------------------------|-----------------|--------------------|-----------------------------------------|
|                          |            | Paper-1   | 4       | 4           | 4 x 15= 60     | &                           | Unit I (8)      | Mathematics        |                                         |
|                          |            |           |         |             |                | <b>Complex Analysis</b>     | Unit II (8)     |                    |                                         |
|                          |            |           |         |             |                |                             | Unit III (7)    |                    |                                         |
|                          |            |           |         |             |                | Part A: Metric Space        | Unit IV (7)     |                    |                                         |
|                          |            |           |         |             |                | Part B: Complex Analysis    | Part B          |                    |                                         |
|                          |            |           |         |             |                |                             | Unit V (8)      |                    |                                         |
|                          | L L        |           |         |             |                |                             | Unit VI (8)     |                    |                                         |
|                          | 8 - VI     |           |         |             |                |                             | Unit VII (7)    |                    |                                         |
|                          |            |           |         |             |                |                             | Unit VIII (7)   |                    |                                         |
|                          | SEMESTER   |           |         |             |                | Numerical Analysis          | Part A          | Diploma in         | Engg. and Tech. (UG), Economics(UG/PG), |
|                          | SEN        | Paper-2   | 4       | 4           | 4x 15= 60      | &                           | Unit I (8)      | Mathematics        | BBA/BCA, B.Sc.(C.S.)                    |
|                          |            |           |         |             |                | <b>Operations Research</b>  | Unit II (8)     |                    |                                         |
|                          |            |           |         |             |                |                             | Unit III (7)    |                    |                                         |
|                          |            |           |         |             |                | Part A: Numerical Analysis  | Unit IV (7)     |                    |                                         |
|                          |            |           |         |             |                |                             | Part B          |                    |                                         |
|                          |            |           |         |             |                | Part B: Operations Research | Unit V (8)      |                    |                                         |
|                          |            |           |         |             |                |                             | Unit VI (8)     |                    |                                         |
|                          |            |           |         |             |                |                             | Unit VII (7)    |                    |                                         |
|                          |            |           |         |             |                |                             | Unit VIII (7)   |                    |                                         |
|                          |            |           |         |             |                |                             |                 |                    |                                         |
|                          |            | Paper-III | 2       | 2 Lab       |                | Practical                   |                 | Diploma in         | Engg. and Tech. (UG), B.Sc.(C.S.)       |
|                          |            | Practical |         | Periods(2   | 2x2x 15= 60    | (Practicals to be done      |                 | Mathematics        |                                         |
|                          |            |           |         | Hours       |                | using Mathematica           |                 |                    |                                         |
|                          |            |           |         | Each)       |                | /MATLAB /Maple              |                 |                    |                                         |
|                          |            |           |         |             |                | /Scilab/Maxima etc.)        |                 |                    |                                         |
|                          |            |           |         | Prog        | ramme Ou       | itcome/ Programme S         | pecific Outco   | me                 |                                         |
|                          | Jutooma    |           |         |             |                |                             |                 |                    |                                         |
| rogramme (               |            |           | 1 0     | .1          |                |                             |                 | 1. 1               |                                         |
| <b>JI:</b> It is to give | e foundati | on knowle | edge fo | or the stud | lents to under | rstand basics of mathemati  | cs including ap | blied aspect for t | he same.                                |

PO2: It is to develope enhanced quantitative skills and pursuing higher mathematics and research as well.

**PO3:** Students will be able to develop solution oriented approach towards various issues related to their environment.

PO4: Students will become employable in various govt. and private sectors

**PO5:** Scientific temper in general and mathematical temper in particular will be developed in students.

#### **Programme Specific Outcome:**

**PSO1:** Student should be able to possess recall basic idea about mathematics which can be displayed by them.

PSO2: Student should have adequate exposure to many aspects of mathematical sciences.

**PSO3:** Student is equipped with mathematical modeling ability, critical mathematical thinking, and problem solving skills etc.

**PSO4:** Student should be able to apply their skills and knowledge in various fields of studies including, science, engineering, commerce and management etc.

# B.A. /B.Sc. I (MATHEMATICS) Detailed Syllabus For CERTIFICATE COURSE IN APPLIED MATHEMATICS

## B.A./B.Sc. I (SEMESTER-I) PAPER-I Differential Calculus & Integral Calculus

| Programm    | ne: Certificate                                                                                                                                                                                           | Year: First            | Semester: First                                                                                                                                                                                |              |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| Class: B.A  |                                                                                                                                                                                                           | rear: First            |                                                                                                                                                                                                |              |  |  |  |  |  |
|             |                                                                                                                                                                                                           |                        | Subject: Mathematics                                                                                                                                                                           |              |  |  |  |  |  |
| Course Co   | ode: B030101T                                                                                                                                                                                             |                        | Course Title: Differential Calculus & Integral Calculus                                                                                                                                        |              |  |  |  |  |  |
| Course or   | utcomes:                                                                                                                                                                                                  | I                      |                                                                                                                                                                                                |              |  |  |  |  |  |
| CO1: The    | programme out                                                                                                                                                                                             | come is to give found  | ation knowledge for the students to understand basics of mathematics including applied aspect for                                                                                              | developing   |  |  |  |  |  |
| enhanced of | quantitative skill                                                                                                                                                                                        | s and pursuing higher  | mathematics and research as well.                                                                                                                                                              |              |  |  |  |  |  |
| CO2: By t   | the time students                                                                                                                                                                                         | complete the course    | they will have wide ranging application of the subject and have the knowledge of real valued function                                                                                          | ions such as |  |  |  |  |  |
| sequence a  | and series. They                                                                                                                                                                                          | will also be able to   | know about convergence of sequence and series. Also, they have knowledge about curvature, en                                                                                                   | nvelope and  |  |  |  |  |  |
| evolutes a  | nd trace curve in                                                                                                                                                                                         | polar, Cartesian as w  | ell as parametric curves.                                                                                                                                                                      |              |  |  |  |  |  |
| CO3: The    | main objective                                                                                                                                                                                            | of the course is to eq | up the student with necessary analytic and technical skills. By applying the principles of integral                                                                                            | he learns to |  |  |  |  |  |
| solve a vai | riety of practical                                                                                                                                                                                        | problems in science a  | nd engineering.                                                                                                                                                                                |              |  |  |  |  |  |
| CO4: The    | student is equip                                                                                                                                                                                          | ped with standard cor  | cepts and tools at an intermediate to advance level that will serve him well towards taking more ad                                                                                            | lvance level |  |  |  |  |  |
| course in r | nathematics.                                                                                                                                                                                              |                        |                                                                                                                                                                                                |              |  |  |  |  |  |
|             | Credits: 4                                                                                                                                                                                                |                        | Core Compulsory / Elective                                                                                                                                                                     |              |  |  |  |  |  |
|             | Max. Marks: 2                                                                                                                                                                                             |                        | Min. Passing Marks:                                                                                                                                                                            |              |  |  |  |  |  |
|             |                                                                                                                                                                                                           | Total No               | . of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0                                                                                                                            |              |  |  |  |  |  |
|             |                                                                                                                                                                                                           |                        | Part- A                                                                                                                                                                                        |              |  |  |  |  |  |
|             |                                                                                                                                                                                                           |                        | Differential Calculus                                                                                                                                                                          |              |  |  |  |  |  |
| Unit        |                                                                                                                                                                                                           |                        | Topics                                                                                                                                                                                         | No. of       |  |  |  |  |  |
|             |                                                                                                                                                                                                           |                        |                                                                                                                                                                                                | Lectures     |  |  |  |  |  |
|             |                                                                                                                                                                                                           |                        | hematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).                                                                                                     |              |  |  |  |  |  |
| _           |                                                                                                                                                                                                           | -                      | n limits of sequences, bounded and monotonic sequences, Cauchy's convergence criterion, Cauchy                                                                                                 |              |  |  |  |  |  |
| I           | sequence, limit superior and limit inferior of a sequence, subsequence, Series of non-negative terms, convergence and divergence                                                                          |                        |                                                                                                                                                                                                |              |  |  |  |  |  |
|             | Comparison tests, Cauchy's integral test, Ratio tests, Root test, Raabe's logarithmic test, de Morgan and Bertrand's tests, alternating series, Leibnitz's theorem, absolute and conditional convergence. |                        |                                                                                                                                                                                                |              |  |  |  |  |  |
|             |                                                                                                                                                                                                           |                        |                                                                                                                                                                                                |              |  |  |  |  |  |
| п           |                                                                                                                                                                                                           | -                      | y of function of single variable, Cauchy's definition, Heine's definition, equivalence of definition                                                                                           |              |  |  |  |  |  |
| 11          |                                                                                                                                                                                                           |                        | tinuity, Borel's theorem, boundedness theorem, Bolzano's theorem, Intermediate value theorem,                                                                                                  | , /          |  |  |  |  |  |
|             |                                                                                                                                                                                                           |                        | termediate value theorem for derivatives, Chain rule, indeterminate forms.                                                                                                                     |              |  |  |  |  |  |
| III         |                                                                                                                                                                                                           |                        | chy Mean value theorems, mean value theorems of higher order, Taylor's theorem with various fferentiation, Leibnitz theorem, Maclaurin's and Taylor's series, Partial differentiation, Euler's |              |  |  |  |  |  |
| 111         |                                                                                                                                                                                                           | nogeneous function.    | merentiation, Leionitz theorem, Maciatin S and Taylor S series, Tartiar differentiation, Euler S                                                                                               |              |  |  |  |  |  |
|             |                                                                                                                                                                                                           |                        | Curvature, Envelops and evolutes, Tests for concavity and convexity, Points of inflexion, Multiple                                                                                             | <u> </u>     |  |  |  |  |  |
| IV          |                                                                                                                                                                                                           |                        | curves and tracing of parametric curves, Tracing of curves in Cartesian and Polar forms.                                                                                                       | 7            |  |  |  |  |  |
|             | points, i arame                                                                                                                                                                                           | the representation of  | curves and tracing of parametric curves, fracing of curves in Cartesian and Forai forms.                                                                                                       |              |  |  |  |  |  |

|             | Integral Calculus                                                                                                                                                                                                                                   |            |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| T.          | Topics                                                                                                                                                                                                                                              | No. of     |  |  |  |  |  |
| U           | nit Topics                                                                                                                                                                                                                                          | Lectures   |  |  |  |  |  |
|             | V Definite integrals as limit of the sum, Riemann integral, Integrability of continuous and monotonic functions, Fundamental theorem of integral calculus, Mean value theorems of integral calculus, Differentiation under the sign of Integration. | 9          |  |  |  |  |  |
|             | $VI$ Improper integrals, their classification and convergence, Comparison test, $\mu$ -test, Abel's test, Dirichlet's test, quotient test, Beta and Gamma functions.                                                                                | 7          |  |  |  |  |  |
| 1           | /II Rectification, Volumes and Surfaces of Solid of revolution, Pappus theorem, Multiple integrals, change of order of double integration, Dirichlet's theorem, Liouville's theorem for multiple integrals.                                         |            |  |  |  |  |  |
| V           | <b>III</b> Vector Differentiation, Gradient, Divergence and Curl, Normal on a surface, Directional Derivative, Vector Integration, Theorems of Gauss, Green, Stokes and related problems.                                                           | 7          |  |  |  |  |  |
| Sugg        | gested Readings (Part- A Differential Calculus):                                                                                                                                                                                                    |            |  |  |  |  |  |
| 1. F        | R.G. Bartle & D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons                                                                                                                                                                       |            |  |  |  |  |  |
| 2. ]        | T.M. Apostal, Calculus Vol. I, John Wiley & Sons Inc.                                                                                                                                                                                               |            |  |  |  |  |  |
| 3. S        | B. Balachandra Rao & C. K. Shantha, Differential Calculus, New Age Publication.                                                                                                                                                                     |            |  |  |  |  |  |
| 4. I        | H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc., 2002.                                                                                                                                                                        |            |  |  |  |  |  |
| 5. <b>(</b> | G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.                                                                                                                                                                                     |            |  |  |  |  |  |
| 6. 5        | Suggestive digital platforms web links: NPTEL/SWAYAM/MOOCS                                                                                                                                                                                          |            |  |  |  |  |  |
|             | Course Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                              |            |  |  |  |  |  |
| Sugg        | gested Readings (Part-B Integral Calculus):                                                                                                                                                                                                         |            |  |  |  |  |  |
| 00          | T.M. Apostal, Calculus Vol. II, John Wiley Publication                                                                                                                                                                                              |            |  |  |  |  |  |
|             | Shanti Narayan & Dr. P.K. Mittal, Integral Calculus, S.Chand                                                                                                                                                                                        |            |  |  |  |  |  |
|             | Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.                                                                                                                                                                                |            |  |  |  |  |  |
|             | Suggestive digital platforms web links: NPTEL/SWAYAM/MOOCS                                                                                                                                                                                          |            |  |  |  |  |  |
|             | Course Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                              |            |  |  |  |  |  |
|             | course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Chemistry/Biochemistry/Life Sci                                                                                                                     | iences(UG) |  |  |  |  |  |
|             | omics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)                                                                                                                                                                                                    |            |  |  |  |  |  |
|             | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                                                                                                             |            |  |  |  |  |  |
| SN          | Assessment Type Max                                                                                                                                                                                                                                 | x. Marks   |  |  |  |  |  |
| Ĺ           | Class Tests                                                                                                                                                                                                                                         | 10         |  |  |  |  |  |
| 2           | Online Quizzes/ Objective Tests                                                                                                                                                                                                                     | 5          |  |  |  |  |  |
| 3]          | resentation                                                                                                                                                                                                                                         |            |  |  |  |  |  |
| <b>i</b>    | Assignment (Introduction to Indian ancient Mathematics and Mathematicians).                                                                                                                                                                         | 5          |  |  |  |  |  |
| Cou         | rse prerequisites: To study this course, a student must have subject Mathematics in class 12 <sup>th</sup>                                                                                                                                          |            |  |  |  |  |  |
| Sug         | gested equivalent online courses:                                                                                                                                                                                                                   |            |  |  |  |  |  |
| 00          | her Suggestions:                                                                                                                                                                                                                                    |            |  |  |  |  |  |

### **B.A./B.Sc. I (SEMESTER-I) Paper-II Practical**

| Programn<br>Class: B.A | ne: Certificate<br>A./B.Sc.                                                                                             | Year: First                                                              | Semester: First                                                                                      |                    |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
|                        |                                                                                                                         | <u> </u>                                                                 | Subject: Mathematics                                                                                 |                    |  |  |  |
| Course Co              | ode: B030102P                                                                                                           |                                                                          | Course Title: Practical                                                                              |                    |  |  |  |
| <b>Course ou</b>       | utcomes:                                                                                                                |                                                                          |                                                                                                      |                    |  |  |  |
| CO1: The               | main objective of                                                                                                       | of the course is to equ                                                  | ip the student to plot the different graph and solve the different types of equations by plotting th | e graph using      |  |  |  |
| different c            | omputer software                                                                                                        | e such as Mathematic                                                     | a /MATLAB /Maple /Scilab/Maxima etc.                                                                 |                    |  |  |  |
| CO2. Afte              | er completion of                                                                                                        | this course student v                                                    | vould be able to know the convergence of sequences through plotting, verify Bolzano-Weiers           | trass theorem      |  |  |  |
| through plo            | otting the sequen                                                                                                       | ice, Cauchy's root tes                                                   | by plotting $n^{th}$ roots and Ratio test by plotting the ratio of $n^{th}$ and $(n + 1)^{th}$ term. |                    |  |  |  |
| CO3. Stud              | lent would be abl                                                                                                       | le to plot Complex nu                                                    | mbers and their representations, Operations like addition, substraction, Multiplication, Division,   | Modulus and        |  |  |  |
| Graphical              | representation of                                                                                                       | polar form.                                                              |                                                                                                      |                    |  |  |  |
|                        |                                                                                                                         | -                                                                        | owing task of matrix as Addition, Multiplication, Inverse, Transpose, Determinant, Rank,             | Eigenvectors       |  |  |  |
| Eigenvalue             |                                                                                                                         | equation and verifica                                                    | tion of the Cayley-Hamilton theorem, Solving the systems of linear equations.                        |                    |  |  |  |
|                        | Credits: 2                                                                                                              |                                                                          | Core Compulsory / Elective                                                                           |                    |  |  |  |
|                        | Max. Marks: 25                                                                                                          |                                                                          | Min. Passing Marks:                                                                                  |                    |  |  |  |
|                        |                                                                                                                         | of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4        | Noof                                                                                                 |                    |  |  |  |
| Unit                   |                                                                                                                         |                                                                          | Topics                                                                                               | No. of<br>Lectures |  |  |  |
|                        |                                                                                                                         | aed in Computer Lab.<br>g Mathematica /MATLAB /Maple /Scilab/Maxima etc. |                                                                                                      |                    |  |  |  |
|                        | 1. Plotting the g                                                                                                       | graphs of the followin                                                   | g functions:                                                                                         |                    |  |  |  |
|                        | (i) ax                                                                                                                  |                                                                          |                                                                                                      |                    |  |  |  |
|                        | (ii) [x] (greates                                                                                                       | t integer function)                                                      |                                                                                                      |                    |  |  |  |
|                        | (iii) $x^{2n}$ ; $n \in \mathbb{N}$                                                                                     | J                                                                        |                                                                                                      |                    |  |  |  |
|                        | (iv) $x^{2n-1}$ ; n $\in$                                                                                               | E N                                                                      |                                                                                                      |                    |  |  |  |
|                        | $(v) \frac{1}{v^{2n-1}}; n \in N$                                                                                       | I                                                                        |                                                                                                      |                    |  |  |  |
|                        | $(vi)\frac{1}{x^{2n}}; n \in \mathbb{N}$                                                                                |                                                                          |                                                                                                      |                    |  |  |  |
|                        | (vii) $\sqrt{ax + b}$ ,                                                                                                 | $ax + b , c \pm  ax + b $                                                |                                                                                                      |                    |  |  |  |
|                        | $(ix)\frac{ x }{x}, \sin\left(\frac{1}{x}\right),$                                                                      | $x \sin\left(\frac{1}{x}\right)$ , $e^x$ , $e^{-x}$ for                  | $x \neq 0.$                                                                                          |                    |  |  |  |
|                        | (x) $e^{ax+b}$ , $log(ax + b)$ , $\frac{1}{ax+b}$ , $sin(ax + b)$ , $cos(ax + b)$ , $ sin(ax + b) $ , $ cos(ax + b) $ . |                                                                          |                                                                                                      |                    |  |  |  |
|                        | Observe and di                                                                                                          | scuss the effect of cha                                                  | inges in the real constants a and b on the graphs.                                                   |                    |  |  |  |
|                        | (2) By plotting                                                                                                         | the graph find the sol                                                   | ution of the equation                                                                                |                    |  |  |  |
|                        | $x = e^x, x^2 + 1$                                                                                                      | $e^{x} = e^{x}, 1 - x^{2} = e^{x}, x$                                    | $x = \log_{10}(x), \cos(x) = x, \sin(x) = x, \cos(y) = \cos(x), \sin(y) = \sin(x)$ etc               |                    |  |  |  |
|                        | (3) Plotting the                                                                                                        | graphs of polynomia                                                      | of degree 2,3, 4 and 5, and their first and second derivatives.                                      |                    |  |  |  |

|     | (4) Sketching parametric curves, e.g., Trochoid, Cycloid, Epicycloid and Hypocycloid etc.                                            |             |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|--|
|     | (5) Tracing of conic in Cartesian coordinates.                                                                                       |             |  |  |  |  |  |  |  |  |
|     | (6) Graph of circular and hyperbolic functions.                                                                                      |             |  |  |  |  |  |  |  |  |
|     | (7) Obtaining surface of revolution of curves.                                                                                       |             |  |  |  |  |  |  |  |  |
|     | (8) Complex numbers and their representations, Operations like addition, Multiplication, Division, Modulus. Graphical representation |             |  |  |  |  |  |  |  |  |
|     | of polar form.                                                                                                                       |             |  |  |  |  |  |  |  |  |
|     | (9) Find numbers between two real numbers and plotting of finite and infinite subset of R.                                           |             |  |  |  |  |  |  |  |  |
|     | (10) Matrix Operations: Addition, Multiplication, Inverse, Transpose, Determinant, Rank, Eigenvectors, Eigenvalues, Characteristic   |             |  |  |  |  |  |  |  |  |
|     | equation and verification of the Cayley-Hamilton theorem, Solving the systems of linear equations.                                   |             |  |  |  |  |  |  |  |  |
|     | (11) Study the convergence of sequences through plotting.                                                                            |             |  |  |  |  |  |  |  |  |
|     | (12)Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot.       |             |  |  |  |  |  |  |  |  |
|     | (13)Study the convergence/divergence of infinite series by plotting their sequences of partial sum.                                  |             |  |  |  |  |  |  |  |  |
|     | (14) Cauchy's root test by plotting <i>n</i> -th roots.                                                                              |             |  |  |  |  |  |  |  |  |
|     | (15) Ratio test by plotting the ratio of <i>n</i> -th and $(n + 1)$ -th term.                                                        |             |  |  |  |  |  |  |  |  |
| Sug | ggested Readings                                                                                                                     |             |  |  |  |  |  |  |  |  |
| Thi | is course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Chemistry/Biochemistry/Life So    | ciences(UG) |  |  |  |  |  |  |  |  |
| Eco | onomics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)                                                                                   |             |  |  |  |  |  |  |  |  |
|     | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                              |             |  |  |  |  |  |  |  |  |
| SN  | Assessment Type Ma                                                                                                                   | ax. Marks   |  |  |  |  |  |  |  |  |
| 1   | Class Tests                                                                                                                          | 10          |  |  |  |  |  |  |  |  |
| 2   | Online Quizzes/ Objective Tests                                                                                                      | 5           |  |  |  |  |  |  |  |  |
| 3   | Presentation                                                                                                                         | 5           |  |  |  |  |  |  |  |  |
| 4   | Assignment 5                                                                                                                         |             |  |  |  |  |  |  |  |  |
| Co  | urse prerequisites: To study this course, a student must have subject Mathematics in class 12 <sup>th</sup>                          |             |  |  |  |  |  |  |  |  |
| Sug | ggested equivalent online courses:                                                                                                   |             |  |  |  |  |  |  |  |  |
| Fui | rther Suggestions:                                                                                                                   |             |  |  |  |  |  |  |  |  |

#### **B.A./B.Sc. I (SEMESTER-II) PAPER-I Matrices and Differential Equations & Geometry**

| Program<br>Class: B.A | me: Certificate<br>A./B.Sc.                                                                                                    | Year: First              | Semester: Second                                                                                    |              |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
|                       |                                                                                                                                |                          | Subject: Mathematics                                                                                |              |  |  |  |  |  |
| <b>Course C</b>       | ode: B030201T                                                                                                                  |                          | Course Title: Matrices and Differential Equations & Geometry                                        |              |  |  |  |  |  |
| Course of             | utcomes:                                                                                                                       |                          |                                                                                                     |              |  |  |  |  |  |
| CO1: The              | e subjects of the                                                                                                              | course are designed in   | n such a way that they focus on developing mathematical skills in algebra, calculus and analysis    | and give in  |  |  |  |  |  |
| depth know            | wledge of geome                                                                                                                | try, calculus, algebra a | and other theories.                                                                                 |              |  |  |  |  |  |
| CO2: The              | e student will be                                                                                                              | able to find the rank,   | eigen values of matrices and study the linear homogeneous and non-homogeneous equations. The        | he course in |  |  |  |  |  |
| differentia           | al equation intend                                                                                                             | ds to develop probler    | n solving skills for solving various types of differential equation and geometrical meaning of      | differential |  |  |  |  |  |
| equation.             |                                                                                                                                |                          |                                                                                                     |              |  |  |  |  |  |
| CO3: The              | e subjects learn                                                                                                               | and visualize the fun    | damental ideas about coordinate geometry and learn to describe some of the surface by using         | g analytical |  |  |  |  |  |
| geometry.             |                                                                                                                                |                          |                                                                                                     |              |  |  |  |  |  |
| CO4: On               | successful com                                                                                                                 | pletion of the course    | e students have gained knowledge about regular geometrical figures and their properties. The        | ey have the  |  |  |  |  |  |
| foundatior            | n for higher cours                                                                                                             | se in Geometry.          |                                                                                                     |              |  |  |  |  |  |
|                       | Credits: 6                                                                                                                     |                          | Core Compulsory / Elective                                                                          |              |  |  |  |  |  |
|                       | Max. Marks: 2                                                                                                                  | 5+75                     | Min. Passing Marks:                                                                                 |              |  |  |  |  |  |
|                       |                                                                                                                                | Total No.                | of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0                                   |              |  |  |  |  |  |
|                       |                                                                                                                                |                          | PART-A                                                                                              |              |  |  |  |  |  |
|                       |                                                                                                                                |                          | Matrices and Differential Equations                                                                 |              |  |  |  |  |  |
| <b>T</b> T <b>*4</b>  |                                                                                                                                |                          |                                                                                                     | No. of       |  |  |  |  |  |
| Unit                  |                                                                                                                                |                          | Topics                                                                                              | Lectures     |  |  |  |  |  |
|                       | Types of Matri                                                                                                                 | ces, Elementary opera    | tions on Matrices, Rank of a Matrix, Echelon form of a Matrix, Normal form of a Matrix, Inverse     |              |  |  |  |  |  |
| Ι                     | of a Matrix by elementary operations, System of linear homogeneous and non-homogeneous equations, Theorems on consistency of a |                          |                                                                                                     |              |  |  |  |  |  |
|                       | system of linear equations.                                                                                                    |                          |                                                                                                     |              |  |  |  |  |  |
|                       | Eigen values, E                                                                                                                | Eigen vectors and chara  | acteristic equation of a matrix, Caley-Hamilton theorem and its use in finding inverse of a matrix, |              |  |  |  |  |  |
| II                    | Complex function                                                                                                               | ions and separation int  | to real and imaginary parts, Exponential and Logarithmic functions Inverse trigonometric and        | 11           |  |  |  |  |  |
|                       | hyperbolic func                                                                                                                | ctions.                  |                                                                                                     |              |  |  |  |  |  |
|                       | Formation of di                                                                                                                | ifferential equations, C | Geometrical meaning of a differential equation, Equation of first order and first degree, Equation  |              |  |  |  |  |  |
| III                   | in which the va                                                                                                                | riables are separable,   | Homogeneous equations, Exact differential equations and equations reducible to the exact form,      | 11           |  |  |  |  |  |
|                       | Linear equatior                                                                                                                | 18.                      |                                                                                                     |              |  |  |  |  |  |
|                       | First order hig                                                                                                                | her degree equations     | solvable for x, y, p, Clairaut's equation and singular solutions, orthogonal trajectories, Linear   | •<br>•       |  |  |  |  |  |
| 187                   | differential equ                                                                                                               | ation of order greater   | than one with constant coefficients, Cauchy- Euler form.                                            | 11           |  |  |  |  |  |
| IV                    |                                                                                                                                |                          |                                                                                                     | 11           |  |  |  |  |  |
|                       |                                                                                                                                |                          |                                                                                                     |              |  |  |  |  |  |

### PART-B

### Geometry

|     | Unit           | Topics                                                                                                                                     | No. of<br>Lectures |  |  |  |  |
|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
|     | V              | General equation of second degree, System of conics, Tracing of conics, Confocal conics, Polar equation of conics and its properties.      |                    |  |  |  |  |
|     | VI             | Three-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension.       | 11                 |  |  |  |  |
|     | VII            | Sphere, Cone and Cylinder.                                                                                                                 | 11                 |  |  |  |  |
|     | VIII           | II Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal conicoids, Reduction of second degree equations. |                    |  |  |  |  |
| Su  | Iggeste        | d Readings (PART-A Matrices and Differential Equations):                                                                                   |                    |  |  |  |  |
|     | 1. Step        | hen H. Friedberg, A.J Insel & L.E. Spence, Linear Algebra, Person                                                                          |                    |  |  |  |  |
|     | <b>2.</b> B. R | ai, D.P. Choudhary & H. J. Freedman, A Course in Differential Equations, Narosa                                                            |                    |  |  |  |  |
| •   | <b>3.</b> D.A. | . Murray, Introductory Course in Differential Equations, Orient Longman                                                                    |                    |  |  |  |  |
| 4   | 4. Sugg        | gested digital plateform:NPTEL/SWAYAM/MOOCs                                                                                                |                    |  |  |  |  |
|     | 5. Cour        | rse Books published in Hindi may be prescribed by the Universities.                                                                        |                    |  |  |  |  |
| Su  | Iggestee       | d Readings (Part-B Geometry):                                                                                                              |                    |  |  |  |  |
| 1.  | Robert         | J.T Bell, Elementary Treatise on Coordinate Geometry of three dimensions, Macmillan India Ltd.                                             |                    |  |  |  |  |
| 2.  | <b>P.R.</b> V  | ittal, Analytical Geometry 2d & 3D, Pearson.                                                                                               |                    |  |  |  |  |
| 3.  | S.L. Lo        | oney, The Elements of Coordinate Geometry, McMillan and Company, London.                                                                   |                    |  |  |  |  |
| 4.  | R.J.T.         | Bill, Elementary Treatise on Coordinate Geometry of Three Dimensions, McMillan India Ltd., 1994.                                           |                    |  |  |  |  |
| 5.  | Sugges         | sted digital plateform:NPTEL/SWAYAM/MOOCs                                                                                                  |                    |  |  |  |  |
| 6.  | Course         | e Books published in Hindi may be prescribed by the Universities.                                                                          |                    |  |  |  |  |
| Thi | s cours        | e can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), Commerce(UG),                 | BBA/BCA            |  |  |  |  |
| B.S | c.(C.S.)       | )                                                                                                                                          |                    |  |  |  |  |
|     |                | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                    |                    |  |  |  |  |
| SN  |                | Assessment Type Max                                                                                                                        | . Marks            |  |  |  |  |
| 1   | Class '        | Tests                                                                                                                                      | 10                 |  |  |  |  |
| 2   | Onlin          | e Quizzes/ Objective Tests                                                                                                                 | 5                  |  |  |  |  |
| 3   | Preser         | ntation                                                                                                                                    | 5                  |  |  |  |  |
| 4   | Assign         | nment                                                                                                                                      | 5                  |  |  |  |  |
| Co  | urse pr        | rerequisites: To study this course, a student must have subject Mathematics in class 12 <sup>th</sup>                                      |                    |  |  |  |  |
| Su  | ggested        | l equivalent online courses:                                                                                                               |                    |  |  |  |  |
| Fu  | rther S        | uggestions:                                                                                                                                |                    |  |  |  |  |

# B.A. /B.Sc. II (MATHEMATICS) Detailed Syllabus For DIPLOMA IN MATHEMATICS

#### B.A./B.Sc.II (SEMESTER-III) PAPER-I Algebra & Mathematical Methods

| Program     | me: Diploma       |                         | Semester: Third                                                                                    |              |  |
|-------------|-------------------|-------------------------|----------------------------------------------------------------------------------------------------|--------------|--|
|             | -                 | Year: Second            |                                                                                                    |              |  |
| Class: B.A  | A./B.Sc.          |                         | Subject Methometics                                                                                |              |  |
|             | ode: B030301T     |                         | Subject: Mathematics<br>Course Title: Algebra & Mathematical Methods                               |              |  |
| Course of   |                   |                         | Course Thie: Algebra & Mathematical Methous                                                        |              |  |
|             |                   | of the building blocks  | of modern algebra. Objective of this course is to introduce students to basic concepts of Group,   | Ring theory  |  |
| and their p |                   | of the building blocks  | or modern argeora. Objective of this course is to introduce students to basic concepts of Group,   | King theory  |  |
| -           | -                 | his course gets a conce | ept of Group, Ring, Integral Domain and their properties. This course will lead the student to bas | ic course in |  |
|             | mathematics and   | -                       | prof Croup, rung, megru Domain and then properties. This course will read the stadent to bus       |              |  |
|             |                   | -                       | ents' knowledge of functions of two variables, Laplace Transforms, Fourier Series.                 |              |  |
|             | -                 | -                       | udents should have knowledge about higher different mathematical methods and will help him         | in going for |  |
| higher stud | dies and research | l.                      |                                                                                                    |              |  |
|             | Credits: 6        |                         | Core Compulsory / Elective                                                                         |              |  |
|             | Max. Marks: 2     | 5+75                    | Min. Passing Marks:                                                                                |              |  |
|             |                   | Total No.               | of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0                                  |              |  |
|             |                   |                         | Part- A                                                                                            |              |  |
|             |                   |                         | Algohao                                                                                            |              |  |
|             |                   |                         | Algebra                                                                                            |              |  |
| Unit        |                   |                         | Topics                                                                                             | No. of       |  |
|             |                   |                         |                                                                                                    | Lectures     |  |
|             | Introduction (    | to Indian ancient Math  | nematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).         |              |  |
| Ι           |                   |                         |                                                                                                    |              |  |
|             | _                 | -                       | Congruence modulo n, Definition of a group with examples and simple properties, Subgroups,         | ,            |  |
|             |                   | a group, Cyclic groups. |                                                                                                    |              |  |
| II          | Permutation g     | coups Even and odd t    | permutations, The alternating group, Cayley's theorem, Direct products, Coset decomposition,       | 11           |  |
|             |                   |                         | nces, Fermat and Euler theorems                                                                    |              |  |
|             |                   | -                       | , Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on                   | L            |  |
| III         | isomorphism.      |                         |                                                                                                    | 11           |  |
|             | Rings, Subring    | s, Integral domains and | d fields, Characteristic of a ring, Ideal and quotient rings, Ring homomorphism, Field of quotient | t            |  |
|             | of an integral d  | -                       |                                                                                                    |              |  |
| IV          |                   |                         |                                                                                                    | 11           |  |
|             |                   |                         |                                                                                                    |              |  |

|      | Part- B                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|      | Mathematical Methods                                                                                                                                                                                                                                                                                                                                                                     |                    |
| l    | Topics                                                                                                                                                                                                                                                                                                                                                                                   | No. of<br>Lectures |
|      | <ul> <li>Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition differentiability of functions two variables, Schwarz's and Young theorem, Taylor's theorem for functions of two variables v examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians.</li> </ul> | ith 12             |
|      | <ul> <li>Existence theorems for Laplace transforms, Linearity of Laplace transform and their properties, Laplace transform of the derivati</li> <li>and integrals of a function, Convolution theorem, inverse Laplace transforms, Solution of the differential equations using Laplace transforms.</li> </ul>                                                                            |                    |
|      | Fourier series, Fourier expansion of piecewise monotonic functions, Half and full range expansions, Fourier transforms (finite infinite), Fourier integral.                                                                                                                                                                                                                              | nd<br>11           |
| •    | Calculus of variations-Variational problems with fixed boundaries- Euler's equation for functionals containing first order derivation<br>and one independent variable, Extremals, Functionals dependent on higher order derivatives, Functionals dependent on more than independent variable, Variational problems in parametric form.                                                   |                    |
| Su   | gested Readings(Part-A Algebra):                                                                                                                                                                                                                                                                                                                                                         |                    |
| 1    | J.B. Fraleigh, A first course in Abstract Algebra, Addison-weley                                                                                                                                                                                                                                                                                                                         |                    |
| 2    | I. N. Herstein, Topics in Algebra, John Wiley & Sons                                                                                                                                                                                                                                                                                                                                     |                    |
| 3    | Suggested digital plateform: NPTEL/SWAYAM/MOOCS                                                                                                                                                                                                                                                                                                                                          |                    |
| 4    | • Course Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                                                                                                                                                                 |                    |
| Su   | gested Readings (Part- B Mathematical Methods):                                                                                                                                                                                                                                                                                                                                          |                    |
| 1.   | T.M. Apostal, Mathematical Analysis, Person                                                                                                                                                                                                                                                                                                                                              |                    |
| 2.   | G.F. Simmons, Differential Equations with Application and Historical Notes, Tata -McGrawHill                                                                                                                                                                                                                                                                                             |                    |
| 3.   | Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.                                                                                                                                                                                                                                                                                                                     |                    |
| 4.   | Suggested digital plateform:NPTEL/SWAYAM/MOOCs                                                                                                                                                                                                                                                                                                                                           |                    |
| 5.   | Course Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                                                                                                                                                                   |                    |
| This | course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)                                                                                                                                                                                                                                                                              |                    |
|      | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                                                                                                                                                                                                                                                  |                    |
| SN   | Assessment Type N                                                                                                                                                                                                                                                                                                                                                                        | ax. Marks          |
| 1    | Class Tests                                                                                                                                                                                                                                                                                                                                                                              | 10                 |
| 2    | Online Quizzes/ Objective Tests                                                                                                                                                                                                                                                                                                                                                          | 5                  |
| 3    | Presentation                                                                                                                                                                                                                                                                                                                                                                             | 5                  |
| 4    | Assignment (Introduction to Indian ancient Mathematics and Mathematicians)                                                                                                                                                                                                                                                                                                               | 5                  |
| Cot  | rse prerequisites: To study this course, a student must have subject Mathematics in class 12 <sup>th</sup>                                                                                                                                                                                                                                                                               |                    |
| Sug  | gested equivalent online courses:                                                                                                                                                                                                                                                                                                                                                        |                    |
| Fur  | her Suggestions:                                                                                                                                                                                                                                                                                                                                                                         |                    |

### **B.A./B.Sc. II (SEMESTER-IV) PAPER-I Differential Equations & Mechanics**

| Program<br>Class: B.A | me: Diploma<br>A./B.Sc.                                                                                                                | Year: Second              | Semester: Fourth                                                                                      |               |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------|---------------|--|
|                       |                                                                                                                                        | I                         | Subject: Mathematics                                                                                  |               |  |
| <b>Course C</b>       | ode: B030401T                                                                                                                          |                           | Course Title: Differential Equations & Mechanics                                                      |               |  |
| Course of             | utcomes:                                                                                                                               | I                         |                                                                                                       |               |  |
| CO1: The              | e objective of thi                                                                                                                     | s course is to familiari  | ze the students with various methods of solving differential equations, partial differential equation | ions of first |  |
| order and             | second order and                                                                                                                       | l to have qualitative app | plications.                                                                                           |               |  |
| <b>CO2:</b> A s       | tudent doing this                                                                                                                      | s course is able to solv  | e differential equations and is able to model problems in nature using ordinary differential equa     | tions. After  |  |
| completing            | g this course, a s                                                                                                                     | student will be able to   | take more courses on wave equation, heat equation, diffusion equation, gas dynamics, non linea        | ar evolution  |  |
| equation e            | etc. These entire of                                                                                                                   | courses are important in  | n engineering and industrial applications for solving boundary value problem.                         |               |  |
| CO3: The              | object of the pap                                                                                                                      | per is to give students k | knowledge of basic mechanics such as simple harmonic motion, motion under other laws and force        | es.           |  |
| CO4: The              | e student, after co                                                                                                                    | ompleting the course ca   | an go for higher problems in mechanic such as hydrodynamics, this will be helpful in getting emp      | ployment in   |  |
| industry.             |                                                                                                                                        |                           |                                                                                                       |               |  |
|                       | Credits: 6                                                                                                                             |                           | Core Compulsory / Elective                                                                            |               |  |
|                       | Max. Marks: 2                                                                                                                          |                           | Min. Passing Marks:                                                                                   |               |  |
|                       |                                                                                                                                        |                           | of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0                                     |               |  |
|                       |                                                                                                                                        |                           | Part- A                                                                                               |               |  |
|                       |                                                                                                                                        |                           | Differential Equations                                                                                |               |  |
|                       |                                                                                                                                        |                           | <b>_</b>                                                                                              | No of         |  |
| Unit                  |                                                                                                                                        |                           | Topics                                                                                                | No. of        |  |
|                       |                                                                                                                                        |                           |                                                                                                       | Lectures      |  |
| т                     | Second order linear differential equations with variable coefficients: Use of a known solution to find another, normal form, method of |                           |                                                                                                       |               |  |
| I                     | undetermined c                                                                                                                         | coefficient, variation of | parameters, Series solutions of differential equations, Power series method.                          | 12            |  |
|                       |                                                                                                                                        |                           |                                                                                                       |               |  |
| II                    | Bessel, Legend                                                                                                                         | lre and Hypergeometric    | e functions and their properties, recurrence and generating relations.                                | 11            |  |
|                       |                                                                                                                                        |                           |                                                                                                       |               |  |
|                       | _                                                                                                                                      | _                         | al equations. Partial differential equations of the first order and degree one, Lagrange's solution,  |               |  |
| III                   |                                                                                                                                        | -                         | rder and degree greater than one. Charpit's method of solution, Surfaces Orthogonal to the given      | 11            |  |
|                       | system of surfa                                                                                                                        | aces.                     |                                                                                                       |               |  |
|                       | Origin of seco                                                                                                                         | ond order PDE, Solution   | on of partial differential equations of the second and higher order with constant coefficients,       |               |  |
| IV                    | Classification                                                                                                                         | of linear partial differ  | ential equations of second order, Solution of second order partial differential equations with        | 11            |  |
|                       | variable coeffic                                                                                                                       | cients, Monge's method    | of solution.                                                                                          |               |  |

|      | Part- B                                                                                                                                                       |                    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|      | Mechanics                                                                                                                                                     |                    |
| τ    | Jnit Topics                                                                                                                                                   | No. of<br>Lectures |
|      | <b>V</b> Frame of reference, work energy principle, Forces in three dimensions, Poinsot's central axis, Wrenches, Null lines and planes.                      | 12                 |
|      | VI Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform strength.                                                                     | 11                 |
|      | Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic                              | c                  |
|      | <b>VII</b> motion, Motion under other law of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth an rough plane curves. | d 11               |
|      | Motion of particles of varying mass, Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimension                             | 3,                 |
|      | Rotating frame of reference, Rotating Earth, Acceleration in terms of different coordinates systems.                                                          | 11                 |
| Su   | ggested Readings(Part-A Differential Equations):                                                                                                              |                    |
| 1.   | G.F. Simmons, Differential Equations with Application and Historical Notes, Tata –McGrawHill                                                                  |                    |
| 2.   | B. Rai, D.P. Choudhary & H. J. Freedman, A Course of Ordinary Differential Equations, Narosa                                                                  |                    |
| 3.   | Ian N. Snedden, Elements of Partial Differential Equations, Dover Publication                                                                                 |                    |
| 4.   | L.E. Elsgolts, Differential Equation and Calculus of variations, University Press of the Pacific.                                                             |                    |
| 5.   | Suggested digital plateform:NPTEL/SWAYAM/MOOCs                                                                                                                |                    |
| 6.   | Course Books published in Hindi may be prescribed by the Universities.                                                                                        |                    |
| Su   | ggested Readings(Part-B Mechanics):                                                                                                                           |                    |
| 1    | R.C. Hibbeler, Engineering Mechanics-Statics, Prentics Hall Publishers                                                                                        |                    |
| 2    | R.C. Hibbeler, Engineering Mechanics-Dynamics, Prentics Hall Publishers                                                                                       |                    |
| 3    | A. Nelson, Engineering Mechanics Statics and Dynamics, Tata McGraw Hill                                                                                       |                    |
| 4    | J.L. Synge & B.A. Griffith, Principles of Mechanics, Tata McGraw Hill                                                                                         |                    |
| 5    | • Suggested digital plateform:NPTEL/SWAYAM/MOOCs                                                                                                              |                    |
| 6    | . Course Books published in Hindi may be prescribed by the Universities.                                                                                      |                    |
| This | course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)                                 |                    |
|      | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                       |                    |
| SN   | Assessment Type Ma                                                                                                                                            | x. Marks           |
| 1    | Class Tests                                                                                                                                                   | 10                 |
| 2    | Online Quizzes/ Objective Tests                                                                                                                               | 5                  |
| 3    | Presentation                                                                                                                                                  | 5                  |
| 4    | Assignment                                                                                                                                                    | 5                  |
| Cou  | rse prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics                                                        |                    |
| Sug  | gested equivalent online courses:                                                                                                                             |                    |
| Fur  | ther Suggestions:                                                                                                                                             |                    |

# B.A. /B.Sc. III (MATHEMATICS) Detailed Syllabus For DEGREE IN MATHEMATICS

#### **Programme: Degree Semester: Fifth** Year: Third Class: B.A./B.Sc. **Subject: Mathematics Course Title: Group and Ring Theory & Linear Algebra** Course Code: B030501T **Course outcomes:** CO1: Liner algebra is a basic course in almost all branches of science. The objective of this course is to introduce a student to the basics of linear algebra and some of its applications. **CO2:** Students will be able to know the concepts of group, ring and other related properties which will prepare the students to take up further applications in the relevant fields. CO3: The student will use this knowledge in computer science, finance mathematics, industrial mathematics and bio mathematics. After completion of this course students appreciate its interdisciplinary nature. **Core Compulsory / Elective Credits: 5** Min. Passing Marks: **Max. Marks: 25+75** Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0 **PART-A Group and Ring Theory** No. of **Topics** Unit Lectures Introduction to Indian ancient Mathematics and Mathematicians should be included under Continuous Internal Evaluation (CIE). 10 Automorphism, inner automorphism, Automorphism groups, Automorphism groups of finite and infinite cyclic groups, Characteristic Ι subgroups, Commutator subgroup and its properties; Applications of factor groups to automorphism groups. Conjugacy classes, The class equation, p-groups, The Sylow theorems and consequences, Applications of Sylow theorems; Finite 10 Π simple groups, Nonsimplicity tests; Generalized Cayley's theorem, Index theorem, Embedding theorem and applications. Polynomial rings over commutative rings, Division algorithm and consequences, Principal ideal domains, Factorization of III 9 polynomials, Reducibility tests, Irreducibility tests, Eisenstein criterion, Unique factorization in Z[x]. Divisibility in integral domains, Irreducibles, Primes, Unique factorization domains, Euclidean domains. 9 IV

#### B.A./B.Sc. III (SEMESTER-V) PAPER-I Group and Ring Theory & Linear Algebra

#### PART-B

## Linear Algebra

| Um                                                   | Unit                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| V                                                    | Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and Dimension, Quotient space.                                                                                                                                                                                                       | 10           |  |  |  |  |
| VI                                                   | Linear transformations, The Algebra of linear transformations, rank nullity theorem, their representation as matrices.                                                                                                                                                                                              | 9            |  |  |  |  |
| VII                                                  | Linear functionals, Dual space, Characteristic values, Cayley Hamilton Theorem.                                                                                                                                                                                                                                     | 9            |  |  |  |  |
| VIII                                                 | Inner product spaces and norms, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for finite dimensional spaces, Gram-Schmidt orthogonalization process, Bilinear and Quadratic forms.                                                                                 | 9            |  |  |  |  |
| Suggeste                                             | ed Readings:                                                                                                                                                                                                                                                                                                        |              |  |  |  |  |
| . Topics                                             | s in Algebra by I. N. Herstein.                                                                                                                                                                                                                                                                                     |              |  |  |  |  |
| 2. Linear                                            | Algebra by K. Hoffman and R. Kunze.                                                                                                                                                                                                                                                                                 |              |  |  |  |  |
| 8. Sugges                                            | sted digital plateform:NPTEL/SWAYAM/MOOCs                                                                                                                                                                                                                                                                           |              |  |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                     |              |  |  |  |  |
| . Course                                             | e Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                                                                                                   |              |  |  |  |  |
|                                                      | e Books published in Hindi may be prescribed by the Universities.<br>rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)                                                                                                                                  |              |  |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                     |              |  |  |  |  |
|                                                      | rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)  Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                                                              | x. Marks     |  |  |  |  |
| SN                                                   | rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)  Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                                                              | x. Marks     |  |  |  |  |
| SN Clas                                              | rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)  Suggested Continuous Evaluation Methods: Max. Marks: 25  Assessment Type Max                                                                                                                         |              |  |  |  |  |
| SN Clas<br>Clas<br>Conl                              | rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)  Suggested Continuous Evaluation Methods: Max. Marks: 25  Assessment Type Max ass Tests                                                                                                               | 10           |  |  |  |  |
| SN Clas<br>Clas<br>Clas<br>Pres                      | rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)  Suggested Continuous Evaluation Methods: Max. Marks: 25  Assessment Type Max as Tests line Quizzes/ Objective Tests                                                                                  | 10<br>5      |  |  |  |  |
| SN Clas<br>Clas<br>Clas<br>Onl<br>B Pres             | rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)  Suggested Continuous Evaluation Methods: Max. Marks: 25  Assessment Type Max ss Tests line Quizzes/ Objective Tests sentation                                                                        | 10<br>5<br>5 |  |  |  |  |
| This course      SN      Class      Class      Press | rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.)  Suggested Continuous Evaluation Methods: Max. Marks: 25  Assessment Type Max ss Tests line Quizzes/ Objective Tests sentation gnment (Introduction to Indian ancient Mathematics and Mathematicians) | 10<br>5<br>5 |  |  |  |  |

### B.A./B.Sc. III (SEMESTER-V) PAPER-II (i) Number Theory & Game Theory

| Programn<br>Class: B.A                    | ne: Degree<br>A./B.Sc.                                                  | Year: Th                                                  | ird                          | Semester: Sixth                                                                                                                                                                                                                                                                                                                                       |              |
|-------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                           |                                                                         |                                                           |                              | Subject: Mathematics                                                                                                                                                                                                                                                                                                                                  |              |
| Course Co                                 | ode: B030502T                                                           |                                                           |                              | Course Title: Number Theory & Game Theory                                                                                                                                                                                                                                                                                                             |              |
| Course ou                                 | itcomes:                                                                | <u> </u>                                                  |                              |                                                                                                                                                                                                                                                                                                                                                       |              |
| CO1: Upo                                  | on successful co                                                        | mpletion, stude                                           | nts will                     | have the knowledge and skills to solve problems in elementary number theory and also apply                                                                                                                                                                                                                                                            | elementary   |
| number the                                | eory to cryptogra                                                       | aphy.                                                     |                              |                                                                                                                                                                                                                                                                                                                                                       |              |
| mak<br>there<br><b>CO3:</b> A si<br>strat | ting process of ir<br>efore help impro<br>ituation is strateg<br>tegic. | nterdependent su<br>ove decision mal<br>gic if the outcom | ubjects.<br>king.<br>me of a | Theory. Game Theory is a mathematical framework which makes possible the analysis of t<br>It is aimed at explaining and predicting how individuals behave in a specific strategic sit<br>decision problem depends on the choices of more than one person. Most decision problems in t<br>bles, case studies, and classroom experiments might be used. | tuation, and |
|                                           | Credits: 5                                                              |                                                           |                              | Core Compulsory / Elective                                                                                                                                                                                                                                                                                                                            |              |
|                                           | Max. Marks: 2                                                           | 5+75                                                      |                              | Min. Passing Marks:                                                                                                                                                                                                                                                                                                                                   |              |
|                                           |                                                                         | Tot                                                       | tal No. (                    | of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0                                                                                                                                                                                                                                                                                     |              |
|                                           |                                                                         |                                                           |                              | Part- A                                                                                                                                                                                                                                                                                                                                               |              |
|                                           |                                                                         |                                                           |                              | Number Theory                                                                                                                                                                                                                                                                                                                                         |              |
| Unit                                      |                                                                         |                                                           |                              | Topics                                                                                                                                                                                                                                                                                                                                                | No. of       |
|                                           |                                                                         |                                                           |                              |                                                                                                                                                                                                                                                                                                                                                       | Lectures     |
| I                                         |                                                                         | uclidean algorit                                          |                              | nes; congruences; Fermat's theorem, Euler's theorem and Wilson's theorem; Fermat's quotients lutions of congruences; Chinese remainder theorem; Euler's phi-function.                                                                                                                                                                                 | 10           |
| п                                         | -                                                                       | -                                                         | -                            | ; primitive roots and their existence; quadratic residues; Legendre symbol, Gauss' lemma about<br>y law; proofs of various formulations; Jacobi symbol.                                                                                                                                                                                               | 9            |
| III                                       | <b>Diophantine E</b><br>Solutions of ax<br>diophantine eq               | $x + by = c, x^n - c$                                     | $+ y^n =$                    | $z^n$ ; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of                                                                                                                                                                                                                                                   | 9            |
| IV                                        | Generating Fu<br>Summation M                                            | lethod. Recurre                                           | , Calcu<br>ence Re           | <b>Ace Relations</b><br>lating coefficient of generating functions, Partitions, Exponential Generating Functions, A<br>elations: Recurrence Relation Models, Divide and conquer Relations, Solution of Linear,<br>omogeneous Recurrence Relations, Solutions with Generating Functions.                                                               | •            |

| Unit Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | Part- B                                                                                                                                                                                                                                           |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Unit       Topics       Lecture         V       Introduction, overview, uses of game theory, some applications and examples, and formal definitions of: the normal form, payoffs, strategies, pure strategy Nash equilibrium.       10         VI       Introduction, characteristic of game theory, Two- person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.       10         VII       Fundamental Theorem of Rectangular games, Concept of Dominance, Dominance and Graphical method of solving Rectangular games.       9         VIII       Fundamental Theorem of Rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of m x n games.       9         VIII       Relationship between rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of m x n game and solution of 2x2, 2 x s, and r x 2 cases by graphical method, algebraic and linear programming solution of m x n games.       9         ggested Readings (Part-A Number Theory ):             Niven, L., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.        Buton, D. M. (2002) Elementary Number Theory and Problems of Combinatories Including Concepts of Graph Theory, Schaum's Outline.          Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatories.            Suggested Readings (Part-B Game Theory):      <                                                                                |                                  | Game Theory                                                                                                                                                                                                                                       |          |
| Introduction, overview, uses of game theory, some applications and examples, and formal definitions of: the normal form, payoffs, strategies, pure strategy Nash equilibrium.       10         VI       Introduction, characteristic of game theory, Two- person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.       10         VII       Introduction, characteristic of game theory, Two- person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.       10         VII       Fundamental Theorem of Rectangular games, Concept of Dominance, Dominance and Graphical method of solving Rectangular games.       9         Relationship between rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of m x n games and solution of 2x2, 2 x s, and r x 2 cases by graphical method, algebraic and linear programming solution of m x n games.       9         ggested Readings (Part-A Number Theory):       10       10         1. Niven, I., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.       9         Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.       5.       10         Suggested Readings (Part-B Game Theory):       10       10         Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.       10         Suggested Readings (Part-B Game Theory):       10       10         Martin Osborne, An Introduction to Game Theory, Oxford Universi | Un                               | it                                                                                                                                                                                                                                                | No. of   |
| V       strategies, pure strategy Nash equilibrium.       10         VI       Introduction, characteristic of game theory, Two- person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.       10         VII       Fundamental Theorem of Rectangular games, Concept of Dominance, Dominance and Graphical method of solving Rectangular games.       9         VII       Relationship between rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of m x n game and solution of 2x2, 2 x s, and r x 2 cases by graphical method, algebraic and linear programming solution of m x n games.       9         ggested Readings (Part-A Number Theory ):       .       .       .         1. Niven, I., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.       .         2. Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi.       .       .         3. Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatories Including Concepts of Graph Theory, Schaum's Outline.       .         4. Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.       .       .         6. Course Books published in Hindi may be prescribed by the Universities.       .       .         ggested Readings (Part-B Game Theory):       .       .         Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003       .                                     |                                  |                                                                                                                                                                                                                                                   | Lectures |
| VI       Fundamental Theorem of Rectangular games, Concept of Dominance, Dominance and Graphical method of solving Rectangular games.       9         VII       Fundamental Theorem of Rectangular games, Concept of Dominance, Dominance and Graphical method of solving Rectangular games.       9         VIII       Relationship between rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of m x n games.       9         ggested Readings (Part-A Number Theory ):       .       .         I. Niven, I., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.       .         Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline.       .         Balakrishnan, V. K. (1994) Introductory Discrete Mathematics, Dover Publications.       .         Suggested digital plateform:NPTEL/SWAYAM/MOOCs       .         Course Books published in Hindi may be prescribed by the Universities.       .         ggested Readings (Part-B Game Theory):       .         Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003       .         Vijay Krishna, Game Theory, Academic Press.       .                                                                                                                                                                                                                                                                               | V                                |                                                                                                                                                                                                                                                   |          |
| VII       games.       9         VIII       Relationship between rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of m x n game and solution of 2x2, 2 x s, and r x 2 cases by graphical method, algebraic and linear programming solution of m x n games.       9         ggested Readings (Part-A Number Theory):       9         I. Niven, I., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.       9         Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi.       9         Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline.       8         Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.       5       5         Suggested Readings (Part-B Game Theory):       8       8         Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003       8       8         Vijay Krishna, Game Theory, Academic Press.       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                                | I Introduction, characteristic of game theory, Two- person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.                                                                                                              | 10       |
| VIII       m x n game and solution of 2x2, 2 x s, and r x 2 cases by graphical method, algebraic and linear programming solution of m x n games.       9         ggested Readings (Part-A Number Theory ):       1.         I. Niven, I., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.       9         Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi.       9         Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline.       9         Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.       9         Suggested digital plateform:NPTEL/SWAYAM/MOOCs       6         Course Books published in Hindi may be prescribed by the Universities.       9         ggested Readings (Part-B Game Theory):       10         Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003       10         Vijay Krishna, Game Theory, Academic Press.       2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VI                               |                                                                                                                                                                                                                                                   |          |
| ggested Readings (Part-A Number Theory ):         I. Niven, I., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.         B. Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi.         B. Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline.         B. Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.         S. Suggested digital plateform:NPTEL/SWAYAM/MOOCs         S. Course Books published in Hindi may be prescribed by the Universities.         ggested Readings (Part-B Game Theory):         Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003         Vijay Krishna, Game Theory, Academic Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | Relationship between rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of                                                                                                                    |          |
| <ul> <li>Niven, I., Zuckerman, H. S. and Montegomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.</li> <li>Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi.</li> <li>Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline.</li> <li>Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.</li> <li>Suggested digital plateform:NPTEL/SWAYAM/MOOCs</li> <li>Course Books published in Hindi may be prescribed by the Universities.</li> <li>ggested Readings (Part-B Game Theory):</li> <li>Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003</li> <li>Vijay Krishna, Game Theory, Academic Press.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VI                               | II m x n game and solution of $2x^2$ , $2x$ s, and r x 2 cases by graphical method, algebraic and linear programming solution of m x n games.                                                                                                     | 9        |
| <ul> <li>Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi.</li> <li>Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline.</li> <li>Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications.</li> <li>Suggested digital plateform:NPTEL/SWAYAM/MOOCs</li> <li>Course Books published in Hindi may be prescribed by the Universities.</li> <li>ggested Readings (Part-B Game Theory):</li> <li>Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003</li> <li>Vijay Krishna, Game Theory, Academic Press.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sugge                            | ested Readings (Part-A Number Theory ):                                                                                                                                                                                                           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4. Ba<br>5. Su<br>6. Co<br>Sugge | alakrishnan,V. K. (1996) Introductory Discrete Mathematics, Dover Publications.<br>aggested digital plateform:NPTEL/SWAYAM/MOOCs<br>burse Books published in Hindi may be prescribed by the Universities.<br>ested Readings (Part-B Game Theory): |          |
| Prajit Dutta, Strategies and Games, MIT Press, (Website 1) http://www.ece.stevens-tech.edu/~ccomanic/ee800c.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Vija                          | ay Krishna, Game Theory, Academic Press.                                                                                                                                                                                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3. Praj                          | it Dutta, Strategies and Games, MIT Press, (Website 1) http://www.ece.stevens-tech.edu/~ccomanic/ee800c.html                                                                                                                                      |          |
| Allan MacKenzie, Game Theory for Wireless Engineers, Synthesis lectures on Communications, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5. Alla                          | an MacKenzie, Game Theory for Wireless Engineers, Synthesis lectures on Communications, 2006                                                                                                                                                      |          |
| Suggested digital plateform:NPTEL/SWAYAM/MOOCS<br>Course Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                |                                                                                                                                                                                                                                                   |          |
| is course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | This co                          | ourse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)                                                                                                                                        |          |
| Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                                                                                                           |          |
| Assessment Type Max. Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SN                               | Assessment Type Max                                                                                                                                                                                                                               | . Marks  |
| Class Tests 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 Cl                             | lass Tests                                                                                                                                                                                                                                        | 10       |
| Online Quizzes/ Objective Tests       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 0                              | Online Quizzes/ Objective Tests                                                                                                                                                                                                                   | 5        |
| Presentation 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 Pr                             | resentation                                                                                                                                                                                                                                       | 5        |
| Assignment 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>4</b> As                      | ssignment                                                                                                                                                                                                                                         | 5        |
| ourse prerequisites: To study this course, a student must have Diploma in Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cours                            | se prerequisites: To study this course, a student must have Diploma in Mathematics                                                                                                                                                                |          |
| ggested equivalent online courses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sugge                            | ested equivalent online courses:                                                                                                                                                                                                                  |          |
| irther Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                                                                                                                                                                                                                                   |          |

### B.A./B.Sc. III (SEMESTER-V) PAPER-II (ii) Graph Theory & Discrete Mathematics

| Program         | me: Degree          |                          | Semester: Sixth                                                                                                                                                                                 |              |
|-----------------|---------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Class: B.A      | A./B.Sc.            | Year: Third              |                                                                                                                                                                                                 |              |
|                 |                     | L                        | Subject: Mathematics                                                                                                                                                                            |              |
| Course C        | ode: B030502T       |                          | Course Title: Graph Theory & Discrete Mathematics                                                                                                                                               |              |
| Course of       | utcomes:            | L                        |                                                                                                                                                                                                 |              |
| <b>CO1:</b> Upo | on successful con   | npletion, students will  | have the knowledge of various types of graphs, their terminology and applications.                                                                                                              |              |
| CO2: Aft        | er Successful con   | mpletion of this course  | e students will be able to understand the isomorphism and homomorphism of graphs. This course                                                                                                   | e covers the |
| basic cond      | cepts of graphs u   | sed in computer scien    | ce and other disciplines. The topics include path, circuits, adjacency matrix, tree, coloring Afte                                                                                              | r successful |
| completio       | n of this course th | he student will have the | e knowledge graph coloring, color problem, vertex coloring.                                                                                                                                     |              |
| CO3: Aft        | er successful co    | mpletion, students wi    | ll have the knowledge of Logic gates, Karnaugh maps and skills to proof by using truth ta                                                                                                       | bles. After  |
| Successfu       | l completion of th  | his course students wil  | l be able to apply the basics of the automation theory, transition function and table.                                                                                                          |              |
| CO4: Thi        | s course covers t   | he basic concepts of d   | iscrete mathematics used in computer science and other disciplines that involve formal reasoning                                                                                                | . The topics |
| include lo      | ogic, counting, re  | lations, hasse diagram   | and Boolean algebra. After successful completion of this course the student will have the kr                                                                                                    | nowledge in  |
| Mathemat        | ical reasoning, co  | ombinatorial analysis,   | discrete structures and Applications.                                                                                                                                                           |              |
|                 | Credits: 5          |                          | Core Compulsory / Elective                                                                                                                                                                      |              |
|                 | Max. Marks: 2       | 5+75                     | Min. Passing Marks:                                                                                                                                                                             |              |
|                 |                     | Total No.                | of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0                                                                                                                               |              |
|                 |                     |                          | Part- A                                                                                                                                                                                         |              |
|                 |                     |                          | Graph Theory                                                                                                                                                                                    |              |
|                 |                     |                          |                                                                                                                                                                                                 | No. of       |
| Unit            |                     |                          | Topics                                                                                                                                                                                          |              |
|                 |                     |                          |                                                                                                                                                                                                 | Lectures     |
| I               |                     | • • • • •                | es of graphs, Simple graph, multi graph, graph terminology, representation of graphs, Bipartite, connected components in a graph, Euler graphs, Directed, Undirected, multi-graph, mixed graph. | 10           |
| II              |                     | -                        | cursal graph, Hamiltonian path and circuits, Graph colouring, chromatics number, isomorphism<br>ence relation and degree of the graph.                                                          | 9            |
| ш               |                     | -                        | circuits, Eulerian circuits, Hamiltonian path and cycles, Adjacency matrix, Weighted graph, st path, Dijkstra's algorithm.                                                                      | , 9          |
| IV              | Tree, Binary ar     | nd Spanning trees, Col   | oring, Color problems, Vertex coloring and important properties.                                                                                                                                | 9            |

|                               | Part- B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
|                               | Discrete Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |  |  |  |
| Unit                          | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. of<br>Lecture |  |  |  |
| V                             | <ul> <li>Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table.</li> <li>Relation- Definition, types of relation, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation.</li> </ul> | 10                |  |  |  |
| VI                            | <ul> <li>Boolean Algebra- Basic definitions, Sum of products and products of sums, Logic gates and Karnaugh maps.</li> <li>Graphs- Simple graph, multi graph, graph terminology, representation of graphs, Bipartite, regular, planar and connected graphs, connected components in a graph, Euler graphs, Hamiltonian path and circuits, Graph colouring, chromatics number, isomorphism and homomorphism of graphs.</li> </ul>                                                                                                                                              | 10                |  |  |  |
| VII                           | <b>Combinatories-</b> Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)                                                                                                                                                                                                                                                     | 9                 |  |  |  |
| VIII                          | Finite Automate Designation of automation theory Deterministic Finite Automation (DFA) transition function transition table                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |  |  |  |
| Suggeste                      | d Readings (Part-A Graph Theory):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |  |  |  |
| <b>3.</b> "G<br><b>4.</b> Sug | troduction to Graph Theory" by Douglas B West<br>raph Theory with Algorithms and Its Applications: In Applied Science and Technology" by Santanu Saha Ray<br>gested digital plateform:NPTEL/SWAYAM/MOOCs<br>rse Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                                                                                                                                               |                   |  |  |  |
|                               | d Readings (Part-B Discrete Mathematics):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |  |  |  |
|                               | e Mathematics by C. L.Liu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |  |  |  |
|                               | e Mathematics with computer application by Trembley and Manohar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |  |  |  |
|                               | Mathematics and Its Applications by Kenneth H. Rosen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |  |  |  |
| 4. Sugges                     | ted digital plateform:NPTEL/SWAYAM/MOOCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |  |  |  |
| 5. Course                     | Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |  |  |  |
| This cours                    | se can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |  |  |  |
|                               | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |  |  |  |
| SN                            | Assessment Type Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . Marks           |  |  |  |
| 1 Class                       | Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                |  |  |  |
| 2 Onli                        | ne Quizzes/ Objective Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                 |  |  |  |
| 3 Prese                       | entation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                 |  |  |  |
| 4 Assig                       | nment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                 |  |  |  |
| Course p                      | prerequisites: To study this course, a student must have Diploma in Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |  |  |  |
| Suggeste                      | d equivalent online courses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |  |  |  |
| Further                       | Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |  |  |  |

### B.A./B.Sc. III (SEMESTER-V) PAPER-II (iii) Differential Geometry & Tensor Analysis

| Programn<br>Class: B.A | ne: Degree<br>A./B.Sc. | Year: Third                                    | Semester: Sixth                                                                                                                                                                                                                                                                             |                    |
|------------------------|------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                        |                        |                                                | Subject: Mathematics                                                                                                                                                                                                                                                                        |                    |
| Course Co              | ode: B030502T          |                                                | Course Title: Differential Geometry & Tensor Analysis                                                                                                                                                                                                                                       |                    |
| Course ou              | tcomes:                |                                                |                                                                                                                                                                                                                                                                                             |                    |
| CO1: Afte              | er Successful con      | npletion of this cours                         | e, students should be able to determine and calculate curvature of curves in different coordinate sys                                                                                                                                                                                       | tems.              |
| CO2: This              | s course covers        | the Local theory of                            | Curves, Local theory of surfaces, Geodesics, Geodesics curvature, Geodesic polars, Curvature of                                                                                                                                                                                             | of curves on       |
| surfaces, G            | Baussian curvatur      | re, Normal curvature                           | etc.                                                                                                                                                                                                                                                                                        |                    |
|                        |                        | pletion of this course<br>Einstein tensor etc. | e, students should have the knowledge of tensor algebra, different types of tensors, Riemannian                                                                                                                                                                                             | space, Ricci       |
|                        | Credits: 5             |                                                | Core Compulsory / Elective                                                                                                                                                                                                                                                                  |                    |
|                        | Max. Marks: 2          | 5+75                                           | Min. Passing Marks:                                                                                                                                                                                                                                                                         |                    |
|                        |                        | Total No                                       | o. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0                                                                                                                                                                                                                        |                    |
|                        |                        |                                                | Part- A                                                                                                                                                                                                                                                                                     |                    |
|                        |                        |                                                | Differential Geometry                                                                                                                                                                                                                                                                       |                    |
| Unit                   |                        |                                                | Topics                                                                                                                                                                                                                                                                                      | No. of<br>Lectures |
|                        |                        |                                                |                                                                                                                                                                                                                                                                                             | Lectures           |
| I                      | rectifying plane       | e, Osculating circle,                          | s, Examples, Plane Curves, tangent and normal and binormal, Osculating Plane, normal plane and osculating sphere Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent urves, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves. | 10                 |
| п                      | •                      |                                                | ric patches on surface curve of a surface, family of surfaces (one parameter), edge of regression, and developable surfaces, surfaces of revolution, Helicoids.                                                                                                                             | 9                  |
| III                    |                        |                                                | arc length, Direction coefficients, families of curves, intrinsic properties, geodesics, canonical es of geodesics, geodesics curvature, Geodesic polars.                                                                                                                                   | 9                  |
| IV                     |                        |                                                | of curves on surfaces, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, lines of curvature, Rodrigue's formula, Euler's theorem.                                                                                                                                   | 9                  |

|      | Part- B                                                                                                                                                                                                                                                                                                                                                                              |          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | Tensor Analysis                                                                                                                                                                                                                                                                                                                                                                      |          |
| T    | Jnit                                                                                                                                                                                                                                                                                                                                                                                 | No. of   |
| •    | Unit Topics                                                                                                                                                                                                                                                                                                                                                                          | Lectures |
|      | V Tensor algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensors-<br>symmetric tensor, inner product, associated tensor with examples.                                                                                                                                                                       | 10       |
|      | <ul> <li>VI Tensor Analysis: Contravariant and covariant vectors and tensors, Mixed tensors, Symmetric and skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Law of transformation of Christoffel's symbols, Covariant differentiation, non- commutativity of Covariant derivative.</li> </ul> | 40       |
| ,    | <b>VII</b> Gradient of scalars, Divergence of a contravariant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector, irrotational vector, with examples.                                                                                                                                                                          | 9        |
|      | Riemannian space, Riemannian curvatures and their properties, geodesics, geodesic curvature, geometrical interpretation of curvature tensor, Ricci tensor, scalar curvature, Einstein space and Einstein tensor.                                                                                                                                                                     | 9        |
| Sug  | gested Readings (Part-A Differential Geometry):                                                                                                                                                                                                                                                                                                                                      |          |
| 1    | . T.J. Willmore, An Introduction to Differential Geometry, Dover Publications, 2012.                                                                                                                                                                                                                                                                                                 |          |
| 2    | . B. O'Neill, Elementary Differential Geometry, 2nd Ed., Academic Press, 2006.                                                                                                                                                                                                                                                                                                       |          |
| 3    | . C.E. Weatherburn, Differential Geometry of Three Dimensions, Cambridge University Press 2003.                                                                                                                                                                                                                                                                                      |          |
| 4    | . D.J. Struik, Lectures on Classical Differential Geometry, Dover Publications, 1988.                                                                                                                                                                                                                                                                                                |          |
| 5    | . S. Lang, Fundamentals of Differential Geometry, Springer, 1999.                                                                                                                                                                                                                                                                                                                    |          |
| 6    | B. Spain, Tensor Calculus: A Concise Course, Dover Publications, 2003.                                                                                                                                                                                                                                                                                                               |          |
| 7    | . An Introduction to Differential Geometry (with the use of tensor Calculus), L. P. Eisenhart, Princeton University Press, 1940.                                                                                                                                                                                                                                                     |          |
| 8    |                                                                                                                                                                                                                                                                                                                                                                                      | 964.     |
| 9    | . Suggested digital plateform:NPTEL/SWAYAM/MOOCs                                                                                                                                                                                                                                                                                                                                     |          |
|      | <b>0.</b> Course Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                                                                                                                                                     |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                      |          |
| Sug  | gested Readings (Part-B Tensor Analysis):                                                                                                                                                                                                                                                                                                                                            |          |
| U    | . Tensors- Mathematics of Differential Geometry by Z. Ahsan, PHI,2015                                                                                                                                                                                                                                                                                                                |          |
|      | . David C. Kay, Tensor Analysis, Schaum's Outline Series, McGraw Hill 1988.                                                                                                                                                                                                                                                                                                          |          |
| 3    | . R. S, Mishra, A Course in Tensors with Applications to Reimannian Geometry, Pothishala Pvt. Ltd, Allahabad.                                                                                                                                                                                                                                                                        |          |
|      | . Suggested digital plateform:NPTEL/SWAYAM/MOOCS                                                                                                                                                                                                                                                                                                                                     |          |
| 5    | . Course Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                                                                                                                                                             |          |
| This | course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)                                                                                                                                                                                                                                                                          |          |
|      | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                                                                                                                                                                                                                                              |          |
| SN   | ••                                                                                                                                                                                                                                                                                                                                                                                   | . Marks  |
| 1    | Class Tests                                                                                                                                                                                                                                                                                                                                                                          | 10       |
| 2    | Online Quizzes/ Objective Tests                                                                                                                                                                                                                                                                                                                                                      | 5        |
| 3    | Presentation                                                                                                                                                                                                                                                                                                                                                                         | 5        |
| 4    | Assignment                                                                                                                                                                                                                                                                                                                                                                           | 5        |
| Cou  | rse prerequisites: To study this course, a student must have Diploma in Mathematics                                                                                                                                                                                                                                                                                                  |          |
| Sug  | gested equivalent online courses:                                                                                                                                                                                                                                                                                                                                                    |          |
| Fur  | ther Suggestions:                                                                                                                                                                                                                                                                                                                                                                    |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                      |          |

### B.A./B.Sc. III (SEMESTER-VI) PAPER-I METRIC SPACES & COMPLEX ANALYSIS

| Program<br>Class: B. | me: Degree<br>A./B.Sc.                                                                                                                        | Year: Third                                                                                                            | Semester: Sixth                                                                                  |                    |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|--|--|
|                      |                                                                                                                                               |                                                                                                                        | Subject: Mathematics                                                                             |                    |  |  |
| Course C             | Code: B030601T                                                                                                                                |                                                                                                                        | Course Title: METRIC SPACES & COMPLEX ANALYSIS                                                   |                    |  |  |
| Course of            | utcomes:                                                                                                                                      |                                                                                                                        |                                                                                                  |                    |  |  |
| CO1: The             | e course is aimed                                                                                                                             | at exposing the studen                                                                                                 | ts to foundations of analysis which will be useful in understanding various physical phenomena a | nd gives the       |  |  |
| student th           | e foundation in m                                                                                                                             | athematics.                                                                                                            |                                                                                                  |                    |  |  |
| CO2: Aft             | er completion of                                                                                                                              | this course the student                                                                                                | will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will b  | e helpful to       |  |  |
| the studen           | nt in understandin                                                                                                                            | g pure mathematics and                                                                                                 | d in research.                                                                                   |                    |  |  |
| CO3: St              | udents will be abl                                                                                                                            | e to know the concepts                                                                                                 | s of metric space, basic concepts and developments of complex analysis which will prepare the st | udents to          |  |  |
| take up fu           | orther applications                                                                                                                           | in the relevant fields.                                                                                                |                                                                                                  |                    |  |  |
|                      | Credits: 4                                                                                                                                    |                                                                                                                        | Core Compulsory / Elective                                                                       |                    |  |  |
|                      | Max. Marks: 25+75 Min. Passing Marks:                                                                                                         |                                                                                                                        |                                                                                                  |                    |  |  |
|                      |                                                                                                                                               | Total No. of I                                                                                                         | ectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0                                    |                    |  |  |
|                      |                                                                                                                                               |                                                                                                                        | Part- A                                                                                          |                    |  |  |
|                      |                                                                                                                                               |                                                                                                                        | Metric Spaces                                                                                    |                    |  |  |
| Unit                 |                                                                                                                                               |                                                                                                                        | Topics                                                                                           | No. of<br>Lectures |  |  |
|                      | Basic Concept                                                                                                                                 | S                                                                                                                      |                                                                                                  |                    |  |  |
| I                    | Metric spaces:                                                                                                                                | Definition and example                                                                                                 | es, Sequences in metric spaces, Cauchy sequences, Complete metric space.                         | 8                  |  |  |
|                      | Topology of M                                                                                                                                 | letric Spaces                                                                                                          |                                                                                                  | -                  |  |  |
| п                    | Open and closed ball, Neighborhood, Open set, Interior of a set, limit point of a set, derived set, closed set, closure of a set, diameter of |                                                                                                                        |                                                                                                  |                    |  |  |
|                      | a set, Cantor's                                                                                                                               | theorem, Subspaces, D                                                                                                  | ense set.                                                                                        |                    |  |  |
|                      | Continuity & Uniform Continuity in Metric Spaces                                                                                              |                                                                                                                        |                                                                                                  |                    |  |  |
| III                  | Continuous ma                                                                                                                                 | ppings, Sequential crite                                                                                               | erion and other characterizations of continuity, Uniform continuity, Homeomorphism,              | 7                  |  |  |
|                      | Contraction ma                                                                                                                                | pping, Banach fixed po                                                                                                 | pint theorem.                                                                                    |                    |  |  |
|                      | Connectedness                                                                                                                                 | Connectedness and Compactness                                                                                          |                                                                                                  |                    |  |  |
| IV                   | Connectedness                                                                                                                                 | Connectedness, Connected subsets of , Connectedness and continuous mappings, Compactness, Compactness and boundedness, |                                                                                                  |                    |  |  |
| 11                   | Continuous fun                                                                                                                                | ctions on compact space                                                                                                | ces.                                                                                             |                    |  |  |
|                      |                                                                                                                                               |                                                                                                                        |                                                                                                  |                    |  |  |

|                                                   | Part- B                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                   | Complex Analysis                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Unit                                              | Topics                                                                                                                                                                                                                                                                                                                                                                                                                          | No. of<br>Lecture |
| V                                                 | Analytic Functions and Cauchy-Riemann Equations<br>Functions of complex variable, Mappings; Mappings by the exponential function, Limits, Theorems on limits, Limits involving the<br>point at infinity, Continuity, Derivatives, Differentiation formulae, Cauchy-Riemann equations, Sufficient conditions for<br>differentiability; Analytic functions and their examples.                                                    | 0                 |
| VI                                                | Elementary Functions and Integrals<br>Exponential function, Logarithmic function, Branches and derivatives of logarithms, Trigonometric function, Derivatives of functions,<br>Definite integrals of functions, Contours, Contour integrals and its examples, Upper bounds for moduli of contour integrals.                                                                                                                     | 8                 |
| VII                                               | Cauchy's Theorems and Fundamental Theorem of Algebra<br>Antiderivatives, Proof of antiderivative theorem, Cauchy-Goursat theorem, Cauchy integral formula; An extension of Cauchy integral<br>formula, Consequences of Cauchy integral formula, Liouville's theorem and the fundamental theorem of algebra.                                                                                                                     | 7                 |
| VIII                                              | Series and Residues<br>Convergence of sequences and series, Taylor series and its examples; Laurent series and its examples, Absolute and uniform<br>convergence of power series, Uniqueness of series representations of power series, Isolated singular points, Residues, Cauchy's residue<br>theorem, residue at infinity; Types of isolated singular points, Residues at poles and its examples.                            |                   |
| 2. Shirali,<br>3. Kumare<br>4. Simmo<br>5. Sugges | natical Analysis by Shanti Narain.<br>Satish & Vasudeva, H. L. (2009). Metric Spaces, Springer, First Indian Print.<br>esan, S. (2014). Topology of Metric Spaces (2nd ed.). Narosa Publishing House. New Delhi.<br>ns, G. F. (2004). Introduction to Topology and Modern Analysis.Tata McGraw Hill. New Delhi.<br>ted digital plateform:NPTEL/SWAYAM/MOOCS.<br>Books published in Hindi may be prescribed by the Universities. |                   |
| . Functio<br>Comple<br>Sugges<br>Course           | d Readings (Part-B Complex Analysis):<br>n of Complex Variable by Shanti Narain.<br>ex variable and applications by Brown & Churchill.<br>ted digital plateform:NPTEL/SWAYAM/MOOCS.<br>Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                          |                   |
| This cours                                        | se can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)                                                                                                                                                                                                                                                                                                                         |                   |
| SN                                                | Suggested Continuous Evaluation Methods: Max. Marks: 25         Assessment Type                                                                                                                                                                                                                                                                                                                                                 | . Marks           |
|                                                   | Tests                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                |
| 2 Onli                                            | ne Quizzes/ Objective Tests                                                                                                                                                                                                                                                                                                                                                                                                     | 5                 |
|                                                   | entation                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                 |
| 0                                                 | nment                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                 |
| Course p                                          | rerequisites: To study this course, a student must have Diploma in Mathematics                                                                                                                                                                                                                                                                                                                                                  |                   |
|                                                   | d equivalent online courses:                                                                                                                                                                                                                                                                                                                                                                                                    |                   |

### B.A./B.Sc. III (SEMESTER-VI) PAPER-II Numerical Analysis & Operation Research

| Program<br>Class: B. | me: Degree<br>A./B.Sc. | Year: Th                             | ird        | Semester: Sixth                                                                                                                                                                                                                                                               |                    |
|----------------------|------------------------|--------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                      |                        | <u> </u>                             |            | Subject: Mathematics                                                                                                                                                                                                                                                          |                    |
| Course C             | Code: B030602T         |                                      |            | Course Title: Numerical Analysis & Operations Research                                                                                                                                                                                                                        |                    |
| Course o             | outcomes:              |                                      |            |                                                                                                                                                                                                                                                                               |                    |
| CO1: The             | e aim of this cour     | se is to teach th                    | ne studer  | t the application of various numerical technique for variety of problems occurring in daily life. A                                                                                                                                                                           | t the end of       |
| the course           | e the student will     | be able to unde                      | erstand th | ne basic concept of Numerical Analysis and to solve algebraic and differential equation.                                                                                                                                                                                      |                    |
| CO2: The             | e main outcome         | will be that stu                     | idents w   | ill be able to handle problems and finding approximated solution. Later he can opt for advance                                                                                                                                                                                | e course in        |
| Numerica             | l Analysis in high     | ner Mathematic                       | es.        |                                                                                                                                                                                                                                                                               |                    |
| CO3: The             | e student will be      | able to solve va                     | arious pi  | oblems based on convex sets and linear programming. After successful completion of this paper                                                                                                                                                                                 | will enable        |
| the studer           | nts to apply the       | basic concepts                       | of tran    | asportation problems and its related problems to apply in further concepts and application of                                                                                                                                                                                 | operations         |
| research.            |                        |                                      |            |                                                                                                                                                                                                                                                                               |                    |
|                      | Credits: 4             |                                      |            | <b>Core Compulsory / Elective</b>                                                                                                                                                                                                                                             |                    |
|                      | Max. Marks: 2          | 5+75                                 |            | Min. Passing Marks:                                                                                                                                                                                                                                                           |                    |
|                      |                        | То                                   | tal No.    | of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0                                                                                                                                                                                                             |                    |
|                      |                        |                                      |            | PART-A                                                                                                                                                                                                                                                                        |                    |
|                      |                        |                                      |            | Numerical Analysis                                                                                                                                                                                                                                                            |                    |
| Unit                 |                        |                                      |            | Topics                                                                                                                                                                                                                                                                        | No. of<br>Lectures |
| I                    | -                      |                                      |            | nt, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation,<br>Difference schemes, Divided differences, Interpolation formula using differences.                                                                                           | 8                  |
| п                    | equations: Dire        | ect method for s<br>ods (Jacobi, Gau | solving s  | Quadrature: Newton Cotes Formulas, Gaussian Quadrature Formulas, System of Linear<br>ystems of linear equations (Gauss elimination, LU Decomposition, Cholesky Decomposition),<br>el, Relaxation methods). The Algebraic Eigen value problem: Jacobi's method, Givens method, | 8                  |
| ш                    |                        | n method, Type                       | •          | ential equations: Euler method, single step methods, Runge-Kutta method, Multi-step methods:<br>roximation: Last Square polynomial approximation, Uniform approximation, Chebyshev                                                                                            | 7                  |
| IV                   | -                      |                                      |            | ns, Shooting method and Difference equation method for solving Linear second order differential first, second and third type.                                                                                                                                                 | 7                  |

#### PART-B

### **Operations Research**

| Unit                    | Topics                                                                                                                                                                                                                                      |          |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| V                       | Introduction, Linear programming problems, statement and formation of general linear programming problems, graphical method, slack and surplus variables, standard and matrix forms of linear programming problem, basic feasible solution. |          |  |
| VI                      | Convex sets, fundamental theorem of linear programming, basic solution, Simplex method, introduction to artificial variables, two phase method Big-M method and their comparison.                                                           | 8        |  |
| VII                     | Resolution of degeneracy, duality in linear programming problems, primal dual relationships, revised simplex method, sensitivity analysis.                                                                                                  | 7        |  |
| VIII                    | Transportation problems, assignment problems.                                                                                                                                                                                               | 7        |  |
| Suggeste                | ed Readings(Part-A Numerical Analysis):                                                                                                                                                                                                     |          |  |
| 1. Numeri               | cal Methods for Engineering and scientific computation by M. K. Jain, S.R.K. Iyengar & R.K. Jain.                                                                                                                                           |          |  |
| 2. Introduc             | ctory methods of Numerical Analysis by S. S. Sastry                                                                                                                                                                                         |          |  |
| 3. Suggest              | ed digital plateform:NPTEL/SWAYAM/MOOCs                                                                                                                                                                                                     |          |  |
| 4. Course               | Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                             |          |  |
| Suggestee               | l Readings(Part-B Operation Research):                                                                                                                                                                                                      |          |  |
| <b>1.</b> Taha, H       | amdy H, "Opearations Research- An Introduction ", Pearson Education.                                                                                                                                                                        |          |  |
| 2.Kanti Sy              | warup, P. K. Gupta, Man Mohan Operations research, Sultan Chand & Sons                                                                                                                                                                      |          |  |
| <b>3.</b> Hillier H     | Frederick S and Lieberman Gerald J., "Operations Research", McGraw Hill Publication.                                                                                                                                                        |          |  |
| 4.Winstor               | Wayne L., "Operations Research: Applications and Algorithms", Cengage Learning, 4th Edition.                                                                                                                                                |          |  |
| <b>5.</b> Hira D.S      | S. and Gupta Prem Kumar, "Problems in Operations Research: Principles and Solutions", S Chand & Co Ltd.                                                                                                                                     |          |  |
| 6. Kalavat              | hy S., "Operations Research", S Chand.                                                                                                                                                                                                      |          |  |
| 7. Suggest              | ed digital plateform:NPTEL/SWAYAM/MOOCs.                                                                                                                                                                                                    |          |  |
| 8. Course               | Books published in Hindi may be prescribed by the Universities.                                                                                                                                                                             |          |  |
| This cours              | e can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)                                                                                                                    |          |  |
|                         | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                                                                                                                                                     |          |  |
| SN Assessment Type Max. |                                                                                                                                                                                                                                             |          |  |
| 1 Class                 |                                                                                                                                                                                                                                             | 10       |  |
|                         | ne Quizzes/ Objective Tests ntation                                                                                                                                                                                                         | 5<br>5   |  |
|                         | nment                                                                                                                                                                                                                                       | <u> </u> |  |
| U                       | rerequisites: To study this course, a student must have Certificate Course in Applied Mathematics                                                                                                                                           |          |  |
| Suggestee               | l equivalent online courses:                                                                                                                                                                                                                |          |  |
| 88                      | Suggestions:                                                                                                                                                                                                                                |          |  |

#### **B.A./B.Sc. III (SEMESTER-VI) PAPER-III Practical**

| Programi<br>Class: B.4 | ne: Degree<br>A./B.Sc.                                                                                                                                           | Year: Third                                                                                                                        | Semester: Sixth                                                                                   |                    |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|--|--|--|
|                        |                                                                                                                                                                  |                                                                                                                                    | Subject: Mathematics                                                                              |                    |  |  |  |
| Course C               | ode: B030603P                                                                                                                                                    |                                                                                                                                    | Course Title: Practical                                                                           |                    |  |  |  |
| Course o               | utcomes:                                                                                                                                                         |                                                                                                                                    |                                                                                                   |                    |  |  |  |
| The main               | objective of the                                                                                                                                                 | course is to equip the                                                                                                             | student to solve the transcendental and algebraic equations, system of linear equations, ordinary | y differential     |  |  |  |
| equations,             | Interpolation, N                                                                                                                                                 | umerical Integration,                                                                                                              | Method of finding Eigenvalue by Power method (up to $4 \times 4$ ), Fitting a Polynomial Function | (up to third       |  |  |  |
| degree).               |                                                                                                                                                                  |                                                                                                                                    |                                                                                                   |                    |  |  |  |
|                        | Credits: 2                                                                                                                                                       |                                                                                                                                    | Core Compulsory / Elective                                                                        |                    |  |  |  |
|                        | Max. Marks: 25                                                                                                                                                   | 5+75                                                                                                                               | Min. Passing Marks:                                                                               |                    |  |  |  |
|                        |                                                                                                                                                                  | Total No.                                                                                                                          | of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4                                 |                    |  |  |  |
| Unit                   |                                                                                                                                                                  |                                                                                                                                    | Topics                                                                                            | No. of<br>Lectures |  |  |  |
|                        | List of the pract<br>etc<br>1. Solution of tr<br>i) Bisection met<br>ii) Newton Rap<br>iii) Secant meth<br>iv) Regula Fals<br>2. Solution of s<br>i) LU decompos | ticals to be done using<br>ranscendental and alge<br>thod<br>hson method (Simple 1<br>od.<br>i method.<br>ystem of linear equation | root, multiple roots, complex roots).                                                             |                    |  |  |  |
|                        | iii) Gauss-Jacob                                                                                                                                                 |                                                                                                                                    |                                                                                                   |                    |  |  |  |
|                        | ,                                                                                                                                                                | iv) Gauss-Seidel method                                                                                                            |                                                                                                   |                    |  |  |  |
|                        | 3. Interpolation                                                                                                                                                 |                                                                                                                                    |                                                                                                   |                    |  |  |  |
|                        | i) Lagrange Inte                                                                                                                                                 | erpolation                                                                                                                         |                                                                                                   |                    |  |  |  |
|                        | ii) Newton's for                                                                                                                                                 | rward, backward and d                                                                                                              | divided difference interpolations                                                                 |                    |  |  |  |
|                        | 4. Numerical In                                                                                                                                                  | tegration                                                                                                                          |                                                                                                   |                    |  |  |  |
|                        | i) Trapezoidal H                                                                                                                                                 | Rule                                                                                                                               |                                                                                                   |                    |  |  |  |
|                        | ii) Simpson's or                                                                                                                                                 | ne third rule                                                                                                                      |                                                                                                   |                    |  |  |  |
|                        | iii) Weddle's R                                                                                                                                                  | ule                                                                                                                                |                                                                                                   |                    |  |  |  |
|                        | iv) Gauss Quad                                                                                                                                                   | rature                                                                                                                             |                                                                                                   |                    |  |  |  |
|                        | 5. Method of fir                                                                                                                                                 | nding Eigenvalue by P                                                                                                              | Power method (up to $4 \times 4$ )                                                                |                    |  |  |  |
|                        | 6. Fitting a Poly                                                                                                                                                | nomial Function (up t                                                                                                              | to third degree)                                                                                  |                    |  |  |  |

|     | 7. Solution of ordinary differential equations                                                                    |                 |
|-----|-------------------------------------------------------------------------------------------------------------------|-----------------|
|     | i) Euler method                                                                                                   |                 |
|     | ii) Modified Euler method                                                                                         |                 |
|     | iii) Runge Kutta method (order 4)                                                                                 |                 |
|     | (iv) The method of successive approximations (Picard)                                                             |                 |
| Su  | ggested Readings:                                                                                                 |                 |
| 'hi | s course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PO | G), B.Sc.(C.S.) |
|     | Suggested Continuous Evaluation Methods: Max. Marks: 25                                                           |                 |
| N   | Assessment Type                                                                                                   | Max. Marks      |
|     | Class Tests                                                                                                       | 10              |
|     | Online Quizzes/ Objective Tests                                                                                   | 5               |
|     | Presentation                                                                                                      | 5               |
|     | Assignment                                                                                                        | 5               |
| Co  | urse prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics           |                 |
| uĮ  | ggested equivalent online courses:                                                                                |                 |
|     | rther Suggestions:                                                                                                |                 |